High-Level Shader Language Specification

Working Draft

June 10, 2025

Contents

1

Introduction 4
1.1 Scope . . . e 4
1.2 Normative References 4
1.3 Terms and definitions 4
1.4 Common Definitions 4
1.41 Correct Data. e 5
1.4.2 Diagnostic Message 5
1.43 lll-formed Program 5
1.4.4 Implementation-defined Behavior 5
1.45 Implementation Limits L 5
1.4.6 Undefined Behavior 5
1.4.7 Unspecified Behavior e 5
1.4.8 Well-formed Program 5
1.4.9 Runtime Implementation 5
1.5 Runtime Targeting e 5
1.6 Single Program Multiple Data Programming Model 6
1.6.1 SPMD Terminology 6
1.6.2 SPMD Execution Model 7
1.6.3 Optimization Restrictions 7
1.7 HLSL Memory Models 8
1.7.1 Memory Spaces e 8
1.7.2 Memory Spaces 8
Lexical Conventions 9
2.1 Unitof Translation e 9
2.2 Phases of Translation 9
2.3 Character Sets 9
2.4 Preprocessing Tokens 10
2.5 Tokens . . . 11
2.6 Comments 11
2.7 Header Names 11
2.8 Preprocessing numbers 11
2.9 Literals L 12
2.9.1 Literal Classifications 12
2.9.2 Integer Literals L 12
2.9.3 Floating-point Literals 13
2.9.4 Vector Literals L 14
Basic Concepts 15
3.1 Preamble e 15
3.2 Declarations and definitions 15
3.3 One-Definition Rule 16
34 SCOPEe .. 17
3.5 Name Lookup 17
3.6 Program and linkage 17
3.6.1 Program Linkage 17
3.6.2 External Linkage 17
3.6.3 Internal Linkage 18
3.6.4 No Linkage 18
3.7 Start ..o 18
3.7.1 Execution Mode 18

3.8 Types
3.8.1 Arithmetic Types
3.8.2 Scalarized Type Compatability

3.9 Lvalues and rvalues

Standard Conversions
4.1 Lvalue-to-rvalue conversion
4.2 Array-to-pointer conversion
4.3 Integral promotion
4.4 Floating point promotion
4.5 Integral conversion
4.6 Floating point conversion
4.7 Floating point-integral conversion
4.8 Boolean conversion
4.9 Elementwise conversion
4.10 Vector splat conversion
4.11 Array and Class splat conversion
4.12 Vector and matrix truncation conversion
4.13 Component-wise conversions
4.14 Qualification conversion
4.15 Conversion Rank
4.15.1 Integer Conversion Rank
4.15.2 Floating Point Conversion Rank

Expressions

5.1 Usual Arithmetic Conversions
5.2 Primary Expressions
5.2.1 Literals
5.2.2 This
5.2.3 Parenthesis
5.2.4 Names
5.3 Postfix Expressions

5.4 Subscript

5.5 Function Calls

Statements

6.1 Label Statements

6.2 Attributes

6.2.1 Unroll Attribute
6.2.2 Loop Attribute

Declarations
7.1 Preamble
7.2 Specifiers

7.2.1 General
7.2.2 Function specifiers
7.3 Declarators

7.4 Initializers

7.4.1 Aggregate Initialization
7.5 Function Definitions

7.6 Attributes

7.6.1 Semantic Annotations
7.6.2 Entry Attributes
7.7 Export Declarations

Overloading

8.1 Overloadable Declarations

Working Draft

8.2 Overload Resolution 34
8.2.1 Candidate Functions and Argument Lists 34

8.2.2 Viable Functions 35

8.2.3 Best Viable Function 35

8.2.4 Implicit Conversion Sequences 35

9 Resource Types 38
9.1 Typed Buffers 38
0.1.1 Constructors L 38

0.1.2 Dimensions 39

9.1.3 Element Access 39

0.2 Raw Buffers 39
9.3 Byte Access Buffers L 40
0.3.1 Constructors L 41

0.3.2 Dimensions 42

9.3.3 Element Access L 42

9.3.4 Atomic Operations 42

9.4 Structured Buffers 44
0.4.1 Constructors L 45

0.4.2 Dimensions 46

9.4.3 Element Access 46

9.4.4 Counter Manipulation 46

9.45 Append 46

0.4.6 Consume L 47

9.5 Constant Buffers 47
9.5.1 Constant Buffer Declaration Block 47

90.5.2 Constant Buffer Class e 47

9.5.3 Constant Buffer Layout 48

9.5.4 Packoffset annotations 48

9.5.5 Default Constant Buffer 49

9.6 Samplers L 49
9.7 CheckAccessFullyMapped 49
9.8 Resource Binding e 50

10 Classes 52
10.1 Static Members L 52
10.2 Conversions 52
11 Templates 53
11.1 Template Instantiation e 53
11.2 Partial Ordering of Function Templates 53

12 Intangible Types 54
13 Runtime 55
Acronyms 56
Glossary 57

Working Draft

1 Introduction [Intro]

1 The High Level Shader Language (HLSL) is the GPU programming language provided in conjunction with the DirectX
runtime. Over many years its use has expanded to cover every major rendering AP across all major development platforms.
Despite its popularity and long history HLSL has never had a formal language specification. This document seeks to
change that.

2 HLSL draws heavy inspiration originally from ISO C standard (2011) and later from ISO C++ standard (2011) with
additions specific to graphics and parallel computation programming. The language is also influenced to a lesser degree
by other popular graphics and parallel programming languages.

3 HLSL has two reference implementations which this specification draws heavily from. The original reference im-
plementation Legacy DirectX Shader Compiler (FXC) has been in use since DirectX 9. The more recent reference
implementation DirectX Shader Compiler (DXC) has been the primary shader compiler since DirectX 12.

4 In writing this specification bias is leaned toward the language behavior of DXC rather than the behavior of FXC,
although that can vary by context.

5 In very rare instances this spec will be aspirational, and may diverge from both reference implementation behaviors.
This will only be done in instances where there is an intent to alter implementation behavior in the future. Since this
document and the implementations are living sources, one or the other may be ahead in different regards at any point in
time.

1.1 Scope [Intro.Scope]
1 This document specifies the requirements for implementations of HLSL. The HLSL specification is based on and highly
influenced by the specifications for the C Programming Language (C) and the C++ Programming Language (C+-+).

2 This document covers both describing the language grammar and semantics for HLSL, and (in later sections) the
standard library of data types used in shader programming.

1.2 Normative References [Intro.Refs]
1 The following referenced documents provide significant influence on this document and should be used in conjunction
with interpreting this standard.

e ISO C standard (2011), Programming languages - C

e ISO C++ standard (2011), Programming languages - C++

e DirectX Specifications, https://microsoft.github.io/DirectX-Specs/

1.3 Terms and definitions [Intro.Terms]

1 This document aims to use terms consistent with their definitions in ISO C standard (2011) and ISO C++ standard
(2011). In cases where the definitions are unclear, or where this document diverges from ISO C standard (2011) and ISO
C++ standard (2011), the definitions in this section, the remaining sections in this chapter, and the attached glossary
(13) supersede other sources.

1.4 Common Definitions [Intro.Defs]

1 The following definitions are consistent between HLSL and the ISO C standard (2011) and ISO C++ standard (2011)
specifications, however they are included here for reader convenience.

Runtime Targeting

1.4.1 Correct Data [Intro.Defs.CorrectData]

1 Datais correct if it represents values that have specified or unspecified but not undefined behavior for all the operations
in which it is used. Data that is the result of undefined behavior is not correct, and may be treated as undefined.

1.4.2 Diagnostic Message [Intro.Defs.Diags]

1 An implementation defined message belonging to a subset of the implementation’s output messages which commu-
nicates diagnostic information to the user.

1.4.3 lll-formed Program [Intro.Defs.llIFormed]

1 A program that is not well-formed, for which the implementation is expected to return unsuccessfully and produce
one or more diagnostic messages.

1.4.4 Implementation-defined Behavior [Intro.Defs.ImpDef]

1 Behavior of a well-formed program and correct data which may vary by the implementation, and the implementation
is expected to document the behavior.

1.4.5 Implementation Limits [Intro.Defs.ImpLimits]

1 Restrictions imposed upon programs by the implementation of either the compiler or runtime environment. The
compiler may seek to surface runtime-imposed limits to the user for improved user experience.

1.4.6 Undefined Behavior [Intro.Defs.Undefined]

1 Behavior of invalid program constructs or incorrect data for which this standard imposes no requirements, or does
not sufficiently detail.

1.4.7 Unspecified Behavior [Intro.Defs.Unspecified]

1 Behavior of a well-formed program and correct data which may vary by the implementation, and the implementation
is not expected to document the behavior.

1.4.8 Well-formed Program [Intro.Defs.WellFormed]

1 An HLSL program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition
Rule.

1.4.9 Runtime Implementation [Intro.Defs.Runtime]

1 A runtime implementation refers to a full-stack implementation of a software runtime that can facilitate the execution
of HLSL programs. This broad definition includes libraries and device driver implementations. The HLSL specification
does not distinguish between the user-facing programming interfaces and the vendor-specific backing implementation.

1.5 Runtime Targeting [Intro.Runtime]

1 HLSL emerged from the evolution of DirectX to grant greater control over GPU geometry and color processing.
It gained popularity because it targeted a common hardware description which all conforming drivers were required to
support. This common hardware description, called a Shader Model, is an integral part of the description for HLSL .
Some HLSL features require specific Shader Model features, and are only supported by compilers when targeting those
Shader Model versions or later.

Working Draft

Single Program Multiple Data Programming Model

1.6 Single Program Multiple Data Programming Model [Intro.Model]

1 HLSL uses a Single Program Multiple Data (SPMD) programming model where a program describes operations on
a single element of data, but when the program executes it executes across more than one element at a time. This
programming model is useful due to GPUs largely being Single Instruction Multiple Data (SIMD) hardware architectures
where each instruction natively executes across multiple data elements at the same time.

2 There are many different terms of art for describing the elements of a GPU architecture and the way they relate to
the SPMD program model. In this document we will use the terms as defined in the following subsections.

1.6.1 SPMD Terminology [Intro.Model. Terms]

1.6.1.1 Host and Device [Intro.Model. Terms.HostDevice]

1 HLSL is a data-parallel programming language designed for programming auxiliary processors in a larger system. In
this context the host refers to the primary processing unit that runs the application which in turn uses a runtime to
execute HLSL programs on a supported device. There is no strict requirement that the host and device be different
physical hardware, although they commonly are. The separation of host and device in this specification is useful for
defining the execution and memory model as well as specific semantics of language constructs.

1.6.1.2 Lane [Intro.Model. Terms.Lane]

1 A Lane represents a single computed element in an SPMD program. In a traditional programming model it would be
analogous to a thread of execution, however it differs in one key way. In multi-threaded programming threads advance
independent of each other. In SPMD programs, a group of Lanes may execute instructions in lockstep because each
instruction may be a SIMD instruction computing the results for multiple Lanes simultaneously, or synchronizing execution
across multiple Lanes or Waves. A Lane has an associated /ane state which denotes the execution status of the lane
(1.6.1.7).

1.6.1.3 Wave [Intro.Model. Terms.Wave]

1 A grouping of Lanes for execution is called a Wave. The size of a Wave is defined as the maximum number of active
Lanes the Wave supports. Wave sizes vary by hardware architecture, and are required to be powers of two. The number
of active Lanes in a Wave can be any value between one and the Wave size.

2 Some hardware implementations support multiple Wave sizes. There is no overall minimum wave size requirement,
although some language features do have minimum Lane size requirements.

3 HLSL is explicitly designed to run on hardware with arbitrary Wave sizes. Hardware architectures may implement
Waves as Single Instruction Multiple Thread (SIMT) where each thread executes instructions in lockstep. This is not
a requirement of the model. Some constructs in HLSL require synchronized execution. Such constructs will explicitly
specify that requirement.

1.6.1.4 Quad [Intro.Model. Terms.Quad]

1 A Quad is a subdivision of four Lanes in a Wave which are computing adjacent values. In pixel shaders a Quad
may represent four adjacent pixels and Quad operations allow passing data between adjacent Lanes. In compute shaders
quads may be one or two dimensional depending on the workload dimensionality. Quad operations require four active
Lanes.

1.6.1.5 Thread Group [Intro.Model. Terms.Group]

1 A grouping of Lanes executing the same shader to produce a combined result is called a Thread Group. Thread Groups
are independent of SIMD hardware specifications. The dimensions of a Thread Group are defined in three dimensions.
The maximum extent along each dimension of a Thread Group, and the total size of a Thread Group are implementation
limits defined by the runtime and enforced by the compiler. If a Thread Group's size is not a whole multiple of the
hardware Wave size, the unused hardware Lanes are implicitly inactive.

2 If a Thread Group size is smaller than the Wave size , or if the Thread Group size is not an even multiple of the Wave
size, the remaining Lane are inactive Lanes.

Working Draft

Single Program Multiple Data Programming Model

1.6.1.6 Dispatch [Intro.Model. Terms.Dispatch]

1 A grouping of Thread Groups which represents the full execution of a HLSL program and results in a completed result
for all input data elements.

1.6.1.7 Lane States [Intro.Model. Terms.LaneState]
1 Lanes may be in four primary states: active, helper, inactive, and predicated off.

2 An active Lane is enabled to perform computations and produce output results based on the initial launch conditions
and program control flow.

3 A helper Lane is a lane which would not be executed by the initial launch conditions except that its computations are
required for adjacent pixel operations in pixel fragment shaders. A helper Lane will execute all computations but will not
perform writes to buffers, and any outputs it produces are discarded. Helper lanes may be required for Lane-cooperative
operations to execute correctly.

4 A inactive Lane is a lane that is not executed by the initial launch conditions. This can occur if there are insufficient
inputs to fill all Lanes in the Wave, or to reduce per-thread memory requirements or register pressure.

5 A predicated off Lane is a lane that is not being executed due to program control flow. A Lane may be predicated
off when control flow for the Lanes in a Wave diverge and one or more lanes are temporarily not executing.

6 The diagram blow illustrates the state transitions between Lane states:

start

start

|

branch| discard

@ branch @

1.6.2 SPMD Execution Model [Intro.Model.Exec]

1 A runtime implementation shall provide an implementation-defined mechanism for defining a Dispatch. A runtime
shall manage hardware resources and schedule execution to conform to the behaviors defined in this specification in an
implementation-defined way. A runtime implementation may sort the Thread Groups of a Dispatch into Waves in an
implementation-defined way. During execution no guarantees are made that all Lanes in a Wave are actively executing.

2 Wave, Quad, and Thread Group operations require execution synchronization of applicable active and helper Lanes
as defined by the individual operation.

1.6.3 Optimization Restrictions [Intro.Model.Restrictions]

1 An optimizing compiler may not optimize code generation such that it changes the behavior of a well-formed program
except in the presence of implementation-defined or unspecified behavior.

2 The presence of Wave, Quad, or Thread Group operations may further limit the valid transformations of a program.
Specifically, control flow operations which result in changing which Lanes, Quads, or Waves are actively executing are
illegal in the presence of cooperative operations if the optimization alters the behavior of the program.

Working Draft

HLSL Memory Models

1.7 HLSL Memory Models [Intro.Memory]

1 Memory accesses for Shader Model 5.0 and earlier operate on 128-bit slots aligned on 128-bit boundaries. This
optimized for the common case in early shaders where data being processed on the GPU was usually 4-element vectors
of 32-bit data types.

2 On modern hardware memory access restrictions are loosened, and reads of 32-bit multiples are supported starting
with Shader Model 5.1 and reads of 16-bit multiples are supported with Shader Model 6.0. Shader Model features are
fully documented in the DirectX Specifications, and this document will not attempt to elaborate further.

1.7.1 Memory Spaces [Intro.Memory.Spaces]

1 HLSL programs manipulate data stored in four distinct memory spaces: thread, threadgroup, device and constant.

1.7.1.1 Thread Memory [Intro.Memory.Spaces. Thread]

1 Thread memory is local to the Lane. It is the default memory space used to store local variables. Thread memory
cannot be directly read from other threads without the use of intrinsics to synchronize execution and memory.

1.7.1.2 Thread Group Memory [Intro.Memory.Spaces.Group]

1 Thread Group memory is denoted in HLSL with the groupshared keyword. The underlying memory for any declaration
annotated with groupshared is shared across an entire Thread Group. Reads and writes to Thread Group Memory, may
occur in any order except as restricted by synchronization intrinsics or other memory annotations.

1.7.1.3 Device Memory [Intro.Memory.Spaces.Device]

1 Device memory is memory available to all Lanes executing on the device. This memory may be read or written to
by multiple Thread Groups that are executing concurrently. Reads and writes to device memory may occur in any order
except as restricted by synchronization intrinsics or other memory annotations. Some device memory may be visible to
the host. Device memory that is visible to the host may have additional synchronization concerns for host visibility.

1.7.1.4 Constant Memory [Intro.Memory.Spaces.Constant]

1 Constant memory is similar to device memory in that it is available to all Lanes executing on the device. Constant
memory is read-only, and an implementation can assume that constant memory is immutable and cannot change during
execution.

1.7.2 Memory Spaces [Intro.Memory.Alignment]
TODO

1 The alignment requirements of an offset into device memory space is the size in bytes of the largest scalar type
contained in the given aggregate type.

Working Draft

2 Lexical Conventions [Lex]

2.1 Unit of Translation [Lex.Translation]

1 The text of HLSL programs is collected in source and header files. The distinction between source and header files is
social and not technical. An implementation will construct a translation unit from a single source file and any included
source or header files referenced via the #include preprocessing directive conforming to the ISO C standard (2011)
preprocessor specification.

2 An implementation may implicitly include additional sources as required to expose the HLSL library functionality as
defined in (13).

2.2 Phases of Translation [Lex.Phases]
1 HLSL inherits the phases of translation from ISO C++ standard (2011), with minor alterations, specifically the
removal of support for trigraph and digraph sequences. Below is a description of the phases.
1. Source files are characters that are mapped to the basic source character set in an implementation-defined manner.
2. Any sequence of backslash (\) immediately followed by a new line is deleted, resulting in splicing lines together.

3. Tokenization occurs and comments are isolated. If a source file ends in a partial comment or preprocessor token the
program is ill-formed and a diagnostic shall be issued. Each comment block shall be treated as a single white-space
character.

4. Preprocessing directives are executed, macros are expanded, pragma and other unary operator expressions are
executed. Processing of #include directives results in all preceding steps being executed on the resolved file, and
can continue recursively. Finally all preprocessing directives are removed from the source.

5. Character and string literal specifiers are converted into the appropriate character set for the execution environment.
6. Adjacent string literal tokens are concatenated.

7. White-space is no longer significant. Syntactic and semantic analysis occurs translating the whole translation unit
into an implementation-defined representation.

8. The translation unit is processed to determine required instantiations, the definitions of the required instantiations
are located, and the translation and instantiation units are merged. The program is ill-formed if any required
instantiation cannot be located or fails during instantiation.

9. External references are resolved, library references linked, and all translation output is collected into a single output.

2.3 Character Sets [Lex.CharSet]

1 The basic source character set is a subset of the ASCII character set. The table below lists the valid characters and
their ASCII values:

Preprocessing Tokens

Hex ASCII Value

Character Name

Glyph or C Escape Sequence

0x09
0x0A
0x0D
0x20
0x21
0x22
0x23
0x25
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30 .. 0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F
0x41 .. Ox5A

0x5B
0x5C
0x5D
Ox5E
Ox5F
0x61 .. Ox7A

0x7B
0x7C
0x7D

Horizontal Tab
Line Feed
Carriage Return
Space
Exclamation Mark
Quotation Mark
Number Sign
Percent Sign
Ampersand
Apostrophe
Left Parenthesis
Right Parenthesis
Asterisk
Plus Sign
Comma
Hyphen-Minus
Full Stop
Solidus
Digit Zero .. Nine
Colon
Semicolon
Less-than Sign
Equals Sign
Greater-than Sign
Question Mark

Latin Capital Letter A ..

Left Square Bracket
Reverse Solidus
Right Square Bracket
Circumflex Accent
Underscore
Latin Small Letter a ..

Left Curly Bracket
Vertical Line
Right Curly Bracket

z

\t
\n
\r

0123456789

= =
o w
U Q
s w)
= m
wn T
Y H QN VOl A e e
o m
< H
= g
> =
<

ghijkl
tuvwzxy

abcdef
nopgqr s

|
t

N =

m
Z

2 An implementation may allow source files to be written in alternate extended character sets as long as that set is a
superset of the basic character set. The translation character set is an extended character set or the basic character set

as chosen by the implementation.

2.4 Preprocessing Tokens

preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal

preprocessing-op-or-punc

[Lex.PPTokens]

each non-whitespace character from the translation character set that cannot be one of the above

1The preprocessor is inherited from C4++ 11 with no grammar extensions. It is specified here only for completeness.

Working Draft

Preprocessing numbers

1 Each preprocessing token that is converted to a token shall have the lexical form of a keyword, an identifier, a
constant, a string literal or an operator or punctuator.

2 Preprocessing tokens are the minimal lexical elements of the language during translation phases 3 through 6 (2.2).
Preprocessing tokens can be separated by whitespace in the form of comments, white space characters, or both. White
space may appear within a preprocessing token only as part of a header name or between the quotation characters in a
character constant or string literal.

3 Header name preprocessing tokens are only recognized within #include preprocessing directives, __has_include
expressions, and implementation-defined locations within #pragma directives. In those contexts, a sequence of characters
that could be either a header name or a string literal is recognized as a header name.

2.5 Tokens [Lex.Tokens]

token:
identifier
keyword
literal
operator-or-punctuator

1 There are five kinds of tokens: identifiers, keywords, literals, and operators or punctuators. All whitespace characters
and comments are ignored except as they separate tokens.

2.6 Comments [Lex.Comments]

1 The characters /* start a comment which terminates with the characters */. The characters // start a comment
which terminates at the next new line.

2.7 Header Names [Lex.Headers]

header-name:
< h-char-sequence >
" g-char-sequence "

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the translation character set except newline or >

g-char-sequence:
g-char
g-char-sequence g-char

g-char:
any character in the translation character set except newline or "

1 Character sequences in header names are mapped to header files or external source file names in an implementation
defined way.

2.8 Preprocessing numbers [Lex.PPNumber]

pp-number:

Working Draft

Literals

digit

. digit

pp-number * digit
pp-number * non-digit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

1 Preprocessing numbers begin with a digit or period (.), and may be followed by valid identifier characters and floating
point literal suffixes (e+, e-, E+, E-, p+, p-, P+, and P-). Preprocessing number tokens lexically include all integer-literal
and floating-literal tokens.

2 Preprocessing numbers do not have types or values. Types and values are assigned to integer-literal, floating-literal,
and vector-literal tokens on successful conversion from preprocessing numbers.

3 A preprocessing number cannot end in a period (.) if the immediate next token is a scalar-element-sequence (2.9.4).
In this situation the pp-number token is truncated to end before the period?.

2.9 Literals [Lex.Literals]
2.9.1 Literal Classifications [Lex.Literal.Kinds]
literal:

integer-literal
character-literal
floating-literal
string-literal
boolean-literal
vector-literal

2.9.2 Integer Literals [Lex.Literal.Int]

integer-literal:
decimal-literal integer-suffixopt
octal-literal integer-suffixop:
hexadecimal-literal integer-suffixpt

decimal-literal:
nonzero-digit
decimal-literal digit

octal-literal: 0
octal-literal octal-digit

hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit

nonzero-digit: one of
123456789

2This grammar formulation is not context-free and requires an LL(2) parser.

Working Draft

Literals

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffixop:
long-suffix unsigned-suffixop:

unsigned-suffix: one of
ul

long-suffix: one of
1L

1 An integer literal is an optional base prefix, a sequence of digits in the appropriate base, and an optional type suffix.
An integer literal shall not contain a period or exponent specifier.

2 The type of an integer literal is the first of the corresponding list in the table below in which its value can be
represented3.

[Suffix | Decimal constant [Octal or hexadecimal constant |

none int32_t int32_t

int64_t uint32_t

int64_t

uint64._t

uorU uint32_t uint32_t

uint64_t uint64_t

lorL int64_t int64_t

uint64_t

Both uor U uint64_t uint64_t
and 1 or L

3 If the specified value of an integer literal cannot be represented by any type in the corresponding list, the integer
literal has no type and the program is ill-formed.

4 An implementation may support the integer suffixes 11 and ull as equivalent to 1 and ul respectively.

2.9.3 Floating-point Literals [Lex.Literal.Float]

floating-literal:
fractional-constant exponent-part,p: floating-suffixop:
digit-sequence exponent-part floating-suffx,p:
fractional-constant:
digit-sequenceyp: . digit-sequence
digit-sequence .
exponent-part:
e Signop: digit-sequence
E signop: digit-sequence
sign: one of
.-
digit-sequence:
digit

3This behavior matches ISO C standard (2011) but is reduced in scope because HLSL has fewer data types.

Working Draft

digit-sequence digit floating-suffix: one of h f 1LHF L

Literals

1 A floating literal is written either as a fractional-constant with an optional exponent-part and optional floating-suffix,

or as an integer digit-sequence with a required exponent-part and optional floating-suffix.

2 The type of a floating literal is float, unless explicitly specified by a suffix. The suffixes h and H specify half, the
suffixes £ and F specify float, and the suffixes 1 and L specify double.* If a value specified in the source is not in the

range of representable values for its type, the program is ill-formed.

2.9.4 \Vector Literals

vector-literal:
integer-literal . scalar-element-sequence
floating-literal . scalar-element-sequence

scalar-element-sequence:
scalar-element-sequence-x
scalar-element-sequence-r

scalar-element-sequence-x:
X
scalar-element-sequence-x x

scalar-element-sequence-r:
r
scalar-element-sequence-r r

[Lex.Literal.Vector]

1 A vector-literal is an integer-literal or floating-point literal followed by a period (.) and a scalar-element-sequence.

2 A scalar-element-sequence is a vector-swizzle-sequence where only the first vector element accessor is valid (x or r).
A scalar-element-sequence is equivalent to a vector splat conversion performed on the integer-literal or floating-literal

value (4.10).

4This substantially deviates from the implementations in FXC and DXC, but is consistent with the official documentation and the behavior

of GLSL. It is also substantially simpler to implement and more regular than the existing behaviors.

Working Draft

https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-appendix-grammar#floating-point-numbers

3 Basic Concepts [Basic]

1 HLSL inherits a significant portion of its language semantics from C and C++. Some of this is a result
of intentional adoption of syntax early in the development of the language and some a side-effect of the
Clang-based implementation of DXC.

2 This chapter includes a lot of definitions that are inherited from C and C++. Some are identical to C
or C++, others are slightly different. HLSL is neither a subset nor a superset of C or C++, and cannot be
simply described in terms of C or C++. This specification includes all necessary definitions for clarity.

3.1 Preamble [Basic.preamble]
1 An entity is a value, object, function, enumerator, type, class member, bit-field, template, template specialization,
namespace, or pack.

2 A name is a use of an identifier (5.2.4), operator-function-id (?7?), conversion-function-id (10.2), or template-id (11)
that denotes any entity or label (6.1).

3 Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is introduced by
a labeled statement (6.1)!.

4 A variable is introduced by the declaration of a reference other than a non-static data member of an object. The
variable's name denotes the reference or object.

5 Whenever a name is encountered it is necessary to determine if the name denotes an entity that is a type or template.
The process for determining if a name refers to a type or template is called name lookup.

6 Two names are the same name if:
e they are identifiers comprised of the same character sequence, or
e they are operator-function-ids formed with the same operator, or
e they are conversion-function-ids formed with the same type, or

e they are template-ids that refer to the same class or function.

7
This section matches ISO C++ standard (2011) section [basic] except for the exclusion of goto and literal
operators.

3.2 Declarations and definitions [Basic.Decl]

1 A declaration (7) may introduce one or more names into a translation unit or redeclare names introduced by previous
declarations. If a declaration introduces names, it specifies the interpretation and attributes of these names. A declaration
may also have effects such as:

e verifying a static assertion (7),
e use of attributes (7), and
e controlling template instantiation (11.1).

2 A declaration is a definition unless:

IHLSL does not have goto, and labeled statements are only valid within switch statements.

15

One-Definition Rule

e it declares a function without specifying the function's body (7.5),

e it is a parameter declaration in a function declaration that does not specify the function’s body (7.5),

e it is a global or namespace member declaration without the static specifier?,

e it declares a static data member in a class definition,

e it is a class name declaration,

e it is a template parameter,

e it is a typedef declaration (7),

e it is an alias-declaration (7),

e it is a using-declaration (7),

e it is a static_assert-declaration (7),
e it is an empty-declaration (7),

e or a using-directive (7).

3 The two examples below are adapted from ISO C++ standard (2011) [basic.def]. All but one of the following are

definitions:

int f(int x) { return x+1; } //

struct S {int a;int b;}; //
struct X { //
int x; //
static int y; //
I
int X::y = 1; //
enum { up, down }; //
namespace N { //
int d; //
static int i; //
}

4 All of the following are declarations:

int a; //
const int c; //
X anX; //

int f(int); //
struct S; //
typedef int Int; //
using N::d; //
using Float = float; //

cbuffer CB { //
int z; //
tbuffer TB { //
int w; //

}

3.3 One-Definition Rule

defines f and x

defines S, S::a, and S::b
defines X

defines non—static member x
declares static data member y

defines X::y
defines up and down
defines N

declares N::d
defines N::i

declares a

declares ¢

declares anX
declares f

declares S

declares Int
declares d

declares Float

does not declare CB
declares z

does not declare TB
declares w

[Basic.ODR]

1 TheISO C++ standard (2011) One-definition rule is adopted as defined in ISO C++ standard (2011) [basic.def.odr].

2Global variable declarations are implicitly constant and external in HLSL.

Working Draft

Program and linkage

3.4 Scope [Basic.Scope]
3.5 Name Lookup [Basic.Lookup]
3.6 Program and linkage [Basic.Linkage]

1 A translation unit (2.1) is comprised of a sequence of declarations:

translation-unit:
declaration-sequencegpt

2 A program is one or more translation units linked together. A program built from a single translation unit, bypassing
a linking step is called freestanding.

3 A program is said to be fully linked, when it contains no unresolved external declarations, and all exported declarations
are entry point declarations (3.7). A program is said to be partially linked, when it contains at least one unresolved external
declaration or at least one exported declaration that is not an entry point.

4 An implementation may generate programs as fully linked or partially linked as requested by the user, and a runtime
may allow fully linked or partially linked programs as the implementation allows.

5 A name has linkage if it can refer to the same entity as a name introduced by a declaration in another scope. If
a variable, function, or another entity with the same name is declared in several scopes, but does not have sufficient
linkage, then several instances of the entity are generated.

e A name with no linkage may not be referred to by names from any other scope.
e A name with internal linkage may be referred to by names from other scopes within the same translation unit.

e A name with external linkage may be referred to by names from other scopes within the same translation unit, and
by names from scopes of other translation units.

e A name with program linkage may be referred to by names from other scopes within the same translation unit,
by names from scopes of other translation units, by names from scopes of other programs, and by a runtime
implementation.

6 When merging translation units through linking or generating a freestanding program only names with program linkage
must be retained in the final program.

3.6.1 Program Linkage [Basic.Linkage.Program]
1 Entities with program linkage can be referred to from other partially linked programs or a runtime implementation.
2 The following entities have program linkage:

e entry point functions (3.7)

e functions marked with export keyword (7.7)

e declarations contained within an export-declaration-group (7.7)

3.6.2 External Linkage [Basic.Linkage.External]

1 Entities with external linkage can be referred to from the scopes in the other translation units and enable linking
between them.

2 The following entities in HLSL have external linkage:
e global variables that are not marked static or groupshared 3

e static data members of classes or template classes

3These are not really linked with other translation units but rather their values are loaded indirectly based on cbuffer mapping.

Working Draft

Types

3 Linkage of functions (including template functions) that are not entry points or marked with export keyword is
implementation dependent. *

3.6.3 Internal Linkage [Basic.Linkage.Internall]
1 Entities with internal linkage can be referred to from all scopes in the current translation unit.

2 The following entities in HLSL have internal linkage:

global variables marked as static or groupshared

all entities declared in an unnamed namespace or a namespace within an unnamed namespace

enumerations

e classes or template classes, their member functions, and nested classes and enumerations

3.6.4 No Linkage [Basic.Linkage.NoLinkage]
1 An entity with no linkage can be referred to only from the scope it is in.
2 Any of the following entites declared at function scope or block scopes derived from function scope have no linkage:
e local variables
e local classes and their member functions

e other entities declared at function scope or block scopes derived from function scope that such as typedefs,
enumerations, and enumerators

3.7 Start [Basic.Start]

1 A fully linked program shall contain one or more global functions, which are the designated starting points for the
program. These global functions are called entry points, because they denote the location where execution inside the
program begins.

2 Entry point functions have different requirements based on the target runtime and execution mode (3.7.1).

3 Parameters to entry functions and entry function return types must be of scalar, vector, or non-intangible class type
(3.8). Scalar and vector parameters and return types must be annotated with semantic annotations (7.6.1). Class type
input and output parameters must have all fields annotated with semantic annotations.

3.7.1 Execution Mode [Basic.Start.Mode]

1 A runtime may define a set of execution modes in an implementation defined way. Each execution mode will have a
set of implementation defined rules which restrict available language functionality as appropriate for the execution mode.

3.8 Types [Basic.types]

1 The object representation of an object of type T is the sequence of N bytes taken up by the object of type T, where
N equals sizeof (T)5. The object representation of an object may be different based on the memory space it is stored
in (1.7.1).

2 The value representation of an object is the set of bits that hold the value of type T. Bits in the object representation
that are not part of the value representation are padding bits.

3 An object type is a type that is not a function type, not a reference type, and not a void type.

4In DXC today functions that are not entry points or exported have internal linkage by default. This can be overriden by -default-linkage
compiler option.

5sizeof (T) returns the size of the object as-if it's stored in device memory, and determining the size if it's stored in another memory space
is not possible.

Working Draft

Types

4 A class type is a data type declared with either the class or struct keywords (10). A class type T may be declared
as incomplete at one point in a translation unit via a forward declaration, and complete later with a full definition. The
type T is the same type throughout the translation unit.

5 There are special implementation-defined types such as handle types, which fall into a category of standard intangible
types. Intangible types are types that have no defined object representation or value representation, as such the size is
unknown at compile time.

6 A class type T is an intangible class type if it contains a base class or members of intangible class type, standard
intangible type, or arrays of such types. Standard intangible types and intangible class types are collectively called
intangible types(12).

7 An object type is an incomplete type if the compiler lacks sufficient information to determine the size of an object of
type T, and it is not an intangible type. It is a complete type if the compiler has sufficient information to determine the
size of an object of type T, or if the type is known to be an intangible type. An object may not be defined to have an
incomplete type.

8 Arithmetic types (3.8.1), enumeration types, and cv-qualified versions of these types are collectively called scalar
types.

9 Vectors of scalar types declared with the built-in vector<T,N> template are vector types. Vector lengths must be
between 1 and 4 (i.e. 1< N <4).

10 Matrices of scalar types declared with the built-in matrix<T,N,M> template are matrix types. Matrix dimensions,
N and M, must be between 1 and 4 (i.e. 1 < N <4).

3.8.1 Arithmetic Types [Basic.types.arithmetic]

1 There are three standard signed integer types: int16_t, int32_t, and int64_t. Each of the signed integer types is
explicitly named for the size in bits of the type's object representation. There is also the type alias int which is an alias
of int32_t. There is one minimum precision signed integer type: minl16int. The minimum precision signed integer
type is named for the required minimum value representation size in bits. The object representation of min16int is int.
The standard signed integer types and minimum precision signed integer type are collectively called signed integer types.

2 There are three standard unsigned integer types: uint16_t, uint32_t, and uint64_t. Each of the unsigned integer
types is explicitly named for the size in bits of the type's object representation. There is also the type alias uint which
is an alias of uint32_t. There is one minimum precision unsigned integer type: minl6uint. The minimum precision
unsigned integer type is named for the required minimum value representation size in bits. The object representation of
minl6uint is uint. The standard unsigned integer types and minimum precision unsigned integer type are collectively
called unsigned integer types.

3 The minimum precision signed integer types and minimum precision unsigned integer types are collectively called
minimum precision integer types. The standard signed integer types and standard unsigned integer types are collectively
called standard integer types. The signed integer types and unsigned integer types are collectively called integer types.
Integer types inherit the object representation of integers defined in ISO/IEC 9899:2023: Standard for Programming
Language C.°. Integer types shall satisfy the constraints defined in ISO/IEC 14882:2011: Standard for Programming
Language C++., section basic.fundamental.

4 There are three standard floating point types: half, float, and double. The float type is a 32-bit floating point
type. The double type is a 64-bit floating point type. Both the float and double types have object representations
as defined in IEEE Standard 754. The half type may be either 16-bit or 32-bit as controlled by implementation defined
compiler settings. If half is 32-bit it will have an object representation as defined in IEEE Standard 754, otherwise it
will have an object representation matching the binary16 format defined in IEEE Standard 7547. There is one minimum
precision floating point type: min16float. The minimum precision floating point type is named for the required minimum
value representation size in bits. The object representation of min16float is float®. The standard floating point types
and minimum precision floating point type are collectively called floating point types.

5 Integer and floating point types are collectively called arithmetic types.

6C23 adopts two’s compliment as the object representation for integer types.
"IEEE-754 only defines a binary encoding for 16-bit floating point values, it does not fully specify the behavior of such types.
8This means when stored to memory objects of type min16float are stored as binary32 as defined in IEEE Standard 754.

Working Draft

Lvalues and rvalues

6 The void type is inherited from ISO C++ standard (2011), which defines it as having an empty set of values and
being an incomplete type that can never be completed. The void type is used to signify the return type of a function
that returns no value. Any expression can be explicitly converted to void.

3.8.2 Scalarized Type Compatability [Basic.types.scalarized]

1 All types T have a scalarized representation, SR(T), which is a list of one or more types representing each scalar
element of T.

2 Scalarized representations are determined as follows:
e The scalarized representation of an array T[nl is SR(Tp),..SR(T,).
e The scalarized representation of a vector vector<T,n> is Tp, ..T),.
e The scalarized representation of a matrix matrix<T,n, m> is T, .. T xm.-

e The scalarized representation of a class type T, SR(T') is computed recursively as SR(T :: base), SR(T ::o
), .SR(T ::p,) where (T::base) is T's base class if it has one, and T ::,, represents the n non-static members of T.

e The scalarized representation for an enumeration type is the underlying arithmetic type.
e The scalarized representation for arithmetic, intangible types, and any other type T is 7.

3 Two types cvl T1 and cv2 T2 are scalar-layout-compatible types if T1 and T2 are the same type or if the sequence
of types defined by the scalar representation SR(T'1) and scalar representation SR(T2) are identical.

3.9 Lvalues and rvalues [Basic.lval]
1 Expressions are classified by the type(s) of values they produce. The valid types of values produced by expressions
are:

An Ivalue represents a function or object.

An rvalue represents a temporary object.

An xvalue (expiring value) represents an object near the end of its lifetime.

A cxvalue (casted expiring value) is an xvalue which, on expiration, assigns its value to a bound Ivalue.

A glvalue is an Ivalue, xvalue, or cxvalue.

o o~ o=

A prvalue is an rvalue that is not an xvalue.

Working Draft

4 Standard Conversions [Conv]

1 HLSL inherits standard conversions similar to ISO C++ standard (2011). This chapter enumerates the full set of
conversions. A standard conversion sequence is a sequence of standard conversions in the following order:

1. Zero or one conversion of either lvalue-to-rvalue, or array-to-pointer.

2. Zero or one conversion of either integral conversion, floating point conversion, floating point-integral conversion,
or boolean conversion, derived-to-base-Ivalue, or flat conversion?.

3. Zero or one conversion of scalar-vector splat, or vector/matrix truncation. 2,
4. Zero or one qualification conversion.

Standard conversion sequences are applied to expressions, if necessary, to convert it to a required destination type.

4.1 Lvalue-to-rvalue conversion [Conv.lval]

1 A glvalue of a non-function type T can be converted to a prvalue. The program is ill-formed if T is an incomplete
type. If the glvalue refers to an object that is not of type T and is not an object of a type derived from T, the program
is ill-formed. If the glvalue refers to an object that is uninitialized, the behavior is undefined. Otherwise the prvalue is of
type T.

2 If the glvalue refers to an array of type T, the prvalue will refer to a copy of the array, not memory referred to by the
glvalue.

4.2 Array-to-pointer conversion [Conv.array]
1 An Ivalue or rvalue of type T[] (unsized array), can be converted to a prvalue of type pointer to T34.
4.3 Integral promotion [Conv.ipromote]

1 An integral promotion is a conversion of:
e a glvalue of integer type other than bool to a cxvalue of integer type of higher conversion rank, or
e a conversion of a prvalue of integer type other than bool to a prvalue of integer type of higher conversion rank, or
e a conversion of a glvalue of type bool to a cxvalue of integer type, or
e a conversion of a prvalue of type bool to a prvalue of integer type.
2 Integer conversion ranks are defined in section 4.15.1.

3 A conversion is only a promotion if the destination type can represent all of the values of the source type.

4.4 Floating point promotion [Conv.fppromote]

1 A glvalue of a floating point type can be converted to a cxvalue of a floating point type of higher conversion rank,
or a prvalue of a floating point type can be converted to a prvalue of a floating point type of higher conversion rank.

2 Floating point conversion ranks are defined in section 77.

IThis differs from C++4 with the addition of flat conversion.

2C+4+ does not support dimension altering conversions for scalar, vector or matrix types.

3HLSL does not support grammar for specifying pointer or reference types, however they are used in the type system and must be described
in language rules.

4Array-to-pointer conversion of constant sized arrays is not supported.

21

Elementwise conversion

4.5 Integral conversion [Conv.iconv]
1 A glvalue of an integer type can be converted to a cxvalue of any other non-enumeration integer type. A prvalue of
an integer type can be converted to a prvalue of any other integer type.

2 If the destination type is unsigned, integer conversion maintains the bit pattern of the source value in the destination
type truncating or extending the value to the destination type.

3 If the destination type is signed, the value is unchanged if the destination type can represent the source value. If the
destination type cannot represent the source value, the result is implementation-defined.

4 If the source type is bool, the values true and false are converted to one and zero respectively.

4.6 Floating point conversion [Conv.fconv]
1 A glvalue of a floating point type can be converted to a cxvalue of any other floating point type. A prvalue of a
floating point type can be converted to a prvalue of any other floating point type.

2 If the source value can be exactly represented in the destination type, the conversion produces the exact representation
of the source value. If the source value cannot be exactly represented, the conversion to a best-approximation of the
source value is implementation defined.

4.7 Floating point-integral conversion [Conv.fpint]

1 A glvalue of floating point type can be converted to a cxvalue of integer type. A prvalue of floating point type can
be converted to a prvalue of integer type. Conversion of floating point values to integer values truncates by discarding
the fractional value. The behavior is undefined if the truncated value cannot be represented in the destination type.

2 A glvalue of integer type can be converted to a cxvalue of floating point type. A prvalue of integer type can be
converted to a prvalue of floating point type. If the destination type can exactly represent the source value, the result is
the exact value. If the destination type cannot exactly represent the source value, the conversion to a best-approximation
of the source value is implementation defined.

4.8 Boolean conversion [Conv.bool]

1 A glvalue of arithmetic type can be converted to a cxvalue of boolean type. A prvalue of arithmetic or unscoped
enumeration type can be converted to a prvalue of boolean type. A zero value is converted to false; all other values
are converted to true.

4.9 Elementwise conversion [Conv.flat]
1 For a given aggregate A, there is a flattened order of subojects, A’, as described in section 7.4.1. A prvalue of A, can
be elementwise converted to a prvalue of an aggregate B, whose flattened form is B/, if the following conditions are true:
e The length of A’, N, is greater than or equal to the length of B/, M.

e For every index I from O to M-1, there exists an implicit conversion from A’[I] to B/[I].

A glvalue of type TIN] can be converted to a cxvalue of type T.

A glvalue of type T[N] can be converted to a cxvalue of type T[M], if N is greater than M.

A glvalue of type T[N] can be converted to a cxvalue of type vector<T,M>, if N is greater than or equal to M.

g B~ W N

A glvalue of type vector<T,N> can be converted to a cxvalue of type T[M], if N is greater than or equal to M.

Working Draft

Component-wise conversions

4.10 Vector splat conversion [Conv.vsplat]
1 A glvalue of type T can be converted to a cxvalue of type vector<T,x> or a prvalue of type T can be converted to a
prvalue of type vector<T,x>. The destination value is the source value replicated into each element of the destination.

2 A glvalue of type T can be converted to a cxvalue of type matrix<T,x,y> or a prvalue of type T can be converted
to a prvalue of type matrix<T,x,y>. The destination value is the source value replicated into each element of the
destination.

3 A prvalue of type vector<T, 1> can be converted to a prvalue of type vector<T,x>. The destination value is the
value in the source vector replicated into each element of the destination.

4.11 Array and Class splat conversion [Conv.asplat]

1 A prvalue of type T can be converted to a prvalue of type struct S, if there are valid conversions from T to each U in
flattened S, see section ?? for description of a flattened ordering. The destination value is the source value T replicated
into each element of the flattened S.

2 A prvalue of type vector<T, 1> can be converted to a prvalue of type struct S, if there are valid conversions from
T to each U in flattened S. The destination value is the value in the source vector replicated into each element of the
flattened S.

3 A prvalue of type T can be converted to a prvalue of type U[N], if there are valid conversions from T to each V in
flattened U. The destination value is the source value T replicated into each element of the flattened U[N].

4 A prvalue of type vector<T, 1> can be converted to a prvalue of type U[N], if there are valid conversions from T to
each V in flattened U. The destination value is the value in the source vector replicated into each element of the flattened
U[N].

4.12 Vector and matrix truncation conversion [Conv.vtrunc]

1 A prvalue of type vector<T,x> can be converted to a prvalue of type:

e vector<T,y> only if y < z, or

o T
2 The resulting value of vector truncation is comprised of elements [0..y), dropping elements [y..x).
3 A prvalue of type matrix<T,x,y> can be converted to a prvalue of type:

e matrix<T,z,w>only if x > z and y > w,

e vector<T,z>only if z > z, or

o T.

4 Matrix truncation is performed on each row and column dimension separately. The resulting value is comprised of
vectors [0..z) which are each separately comprised of elements [0..w). Trailing vectors and elements are dropped.

5 Reducing the dimension of a vector to one (vector<T,1>), can produce either a single element vector or a scalar of
type T. Reducing the rows of a matrix to one (matrix<T,x,1>), can produce either a single row matrix, a vector of type
vector<T,x>, or a scalar of type T.

4.13 Component-wise conversions [Conv.cwise]

1 A glvalue of type vector<T, x> can be converted to a cxvalue of type vector<V, x>, or a prvalue of type vector<T, x>
can be converted to a prvalue of type vector<V,x>. The source value is converted by performing the appropriate
conversion of each element of type T to an element of type V following the rules for standard conversions in chapter 4.

2 A glvalue of type matrix<T,x,y> can be converted to a cxvalue of type matrix<V,x,y> or a prvalue of type
matrix<T,x,y> can be converted to a prvalue of type matrix<V,x,y>. The source value is converted by performing

Working Draft

Conversion Rank

the appropriate conversion of each element of type T to an element of type V following the rules for standard conversions
in chapter 4.

4.14 Qualification conversion [Conv.qual]

A prvalue of type "cvl T" can be converted to a prvalue of type "cv2 T" if type "cv2 T" is more cv-qualified than " cvl
T".

4.15 Conversion Rank [Conv.rank]

1 Every integer and floating point type have defined conversion ranks. These conversion ranks are used to differentiate
between promotions and other conversions (see: ?? and 77).

4.15.1 Integer Conversion Rank [Conv.rank.int]
e No two signed integer types shall have the same conversion rank even if they have the same representation.
e The rank of a signed integer type shall be greater than the rank of any signed integer type with a smaller size.
e The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type.
e The rank of bool shall be less than the rank of all other standard integer types.

e The rank of a minimum precision integer type shall be less than the rank of any other minimum precision integer
type with a larger minimum value representation size.

e The rank of a minimum precision integer type shall be less than the rank of all standard integer types.

e For all integer types T1, T2, and T3: if T1 has greater rank than T2 and T2 has greater rank than T3, then T1 shall
have greater rank than T3.

4.15.2 Floating Point Conversion Rank [Conv.rank.float]
e The rank half shall be greater than the rank of min16float.
e The rank float shall be greater than the rank of half.

e The rank double shall be greater than the rank of float.

For all floating point types T1, T2, and T3: if T1 has greater rank than T2 and T2 has greater rank than T3, then
T1 shall have greater rank than T3.

Working Draft

5 Expressions [Expr]

1 This chapter defines the formulations of expressions and the behavior of operators when they are not overloaded.
Only member operators may be overloaded®. Operator overloading does not alter the rules for operators defined by this
standard.

2 An expression may also be an unevaluated operand when it appears in some contexts. An unevaluated operand is a

expression which is not evaluated in the program?.

3 Whenever a glvalue appears in an expression that expects a prvalue, a standard conversion sequence is applied based
on the rules in 4.

5.1 Usual Arithmetic Conversions [Expr.conv]

1 Binary operators for arithmetic and enumeration type require that both operands are of a common type. When
the types do not match the wusual arithmetic conversions are applied to yield a common type. When usual arithmetic
conversions are applied to vector operands they behave as component-wise conversions (4.13). The wsual arithmetic
conversions are:

e If either operand is of scoped enumeration type no conversion is performed, and the expression is ill-formed if the
types do not match.

o |f either operand is a vector<T,X>, vector truncation or scalar extension is performed with the following rules:
— If both vectors are of the same length, no dimension conversion is required.

— If one operand is a vector and the other operand is a scalar, the scalar is extended to a vector via a Splat
conversion (4.10) to match the length of the vector.

— Otherwise, if both operands are vectors of different lengths, the vector of longer length is truncated to match
the length of the shorter vector (4.12).

o If either operand is of type double or vector<double, X>, the other operator shall be converted to match.

e Otherwise, if either operand is of type float or vector<float, X>, the other operand shall be converted to
match.

e Otherwise, if either operand is of type half or vector<half, X>, the other operand shall be converted to match.

e Otherwise, integer promotions are performed on each scalar or vector operand following the appropriate scalar or
component-wise conversion (4).

— If both operands are scalar or vector elements of signed or unsigned types, the operand of lesser integer
conversion rank shall be converted to the type of the operand with greater rank.

— Otherwise, if both the operand of unsigned scalar or vector element type is of greater rank than the operand
of signed scalar or vector element type, the signed operand is converted to the type of the unsigned operand.

— Otherwise, if the operand of signed scalar or vector element type is able to represent all values of the operand
of unsigned scalar or vector element type, the unsigned operand is converted to the type of the signed operand.

— Otherwise, both operands are converted to a scalar or vector type of the unsigned integer type corresponding
to the type of the operand with signed integer scalar or vector element type.

I This will change in the future, but this document assumes current behavior.
2The operand to sizeof(...) is a good example of an unevaluated operand. In the code sizeof(Foo()), the call to Foo() is never
evaluated in the program.

25

Primary Expressions

5.2 Primary Expressions [Expr.Primary]

primary-expression:
literal
this
(expression)
id-expression

5.2.1 Literals [Expr.Primary.Literal]

1 The type of a literal is determined based on the grammar forms specified in 2.9.1.

5.2.2 This [Expr.Primary. This]

1 The keyword this names a reference to the implicit object of non-static member functions. The this parameter is
always a prvalue of non-cv-qualifiedtype. 3

2 A this expression shall not appear outside the declaration of a non-static member function.

5.2.3 Parenthesis [Expr.Primary.Paren]

1 An expression (E) enclosed in parenthesis has the same type, result and value category as E without the enclosing
parenthesis. A parenthesized expression may be used in the same contexts with the same meaning as the same non-
parenthesized expression.

5.2.4 Names [Expr.Primary.ID]

The grammar and behaviors of this section are almost identical to C/C++ with some subtractions (notably
lambdas and destructors).

id-expression:
unqualified-id
qualified-id

5.2.4.1 Unqualified ldentifiers [Expr.Primary.ID.Unqual]

unqualified-id:
identifier
operator-function-id
conversion-function-id
template-id

5.2.4.2 Qualified ldentifiers [Expr.Primary.ID.Qual]

qualified-id:
nested-name-specifier templateop: unqualified-id

nested-name-specifier:

type-name ::

namespace-name : :

nested-name-specifier identifier : :
nested-name-specifier templatep: simple-template-id : :

3HLSL Specs Proposal 0007 proposes adopting C++-like syntax and semantics for cv-qualified this references.

Working Draft

https://github.com/microsoft/hlsl-specs/blob/main/proposals/0007-const-instance-methods.md

Function Calls

5.3 Postfix Expressions [Expr.Post]

postfix-expression:
primary-expression
postfix-expression [expression |
postfix-expression [braced-init-list |
postfix-expression (expression-listop:)
simple-type-specifier (expression-listype)
typename-specifier (expressiongp:)
simple-type-specifier braced-init-list
typename-specifier braced-init-list
postfix-expression . templategp; id-expression
postfix-expression -> templateqy; id-expression
postfix-expression ++
postfix-expression --

5.4 Subscript [Expr.Post.Subscript]

1 A postfix-expression followed by an expression in square brackets ([1) is a subscript expression. In an array subscript
expression of the form E1[E2], E1 must either be a variable of array, vector, or matrix of T[], or an object of type T
where T provides an overloaded implementation of operator[] (8).*

5.5 Function Calls [Expr.Post.Call]

1 A function call may be an ordinary function, or a member function. In a function call to an ordinary function, the
postfix-expression must be an Ivalue that refers to a function. In a function call to a member function, the postfix-
expression will be an implicit or explicit class member access whose id-expression is a member function name.

2 When a function is called, each parameter shall be initialized with its corresponding argument. The order in which
parameters are initialized is unspecified. °

3 If the function is a non-static member function the this argument shall be initialized to a reference to the object
of the call as if casted by an explicit cast expression to an lvalue reference of the type that the function is declared as a
member of.

4 Parameters are either input parameters, output parameters, or input/output parameters as denoted in the called
function’s declaration (7.5). For all types of parameters the argument expressions are evaluated before the function call
occurs.

5 Input parameters are passed by-value into a function. If an argument to an input parameter is of constant-sized array
type, the array is copied to a temporary and the temporary value is converted to an address via array-to-pointer decay.
If an argument is an unsized array type, the array Ivalue directly decays via array-to-pointer decay. °

6 Arguments to output and input/output parameters must be Ivalues. Output parameters are not initialized prior
to the call; they are passed as an uninitialized cxvalue (3.9). An output parameter is only initialized explicitly inside
the called function. It is undefined behavior to not explicitly initialize an output parameter before returning from the
function in which it is defined. The cxvalue created from an argument to an input/output parameter is initialized through
copy-initialization from the Ivalue argument expression. Overload resolution shall occur on argument initialization as if
the expression T Param = Arg were evaluated. In both cases, the cxvalue shall have the type of the parameter and the
argument can be converted to that type through implicit or explicit conversion.

7 If an argument to an output or input/output parameter is a constant sized array, the array is copied to a temporary
cxvalue following the same rules for any other data type. If an argument to an output or input/output parameter is an

4HLSL does not support the base address of a subscript operator being the expression inside the braces, which is valid in C and C++.

5Today in DXC targeting DXIL matches the Microsoft C++ ABI and evaluates argument expressions right-to-left, while SPIR-V generation
matches the Itanium ABI evaluating parameters left-to-right. There are good arguments for unifying these behaviors, and arguments for
keeping them different.

5This results in input parameters of unsized arrays being modifiable by a function.

Working Draft

Function Calls

unsized array type, the array lvalue directly decays via array-to-pointer decay. An argument of a constant sized array of
type TIN] can be converted to a cxvalue of an unsized array of type T[] through array to pointer decay. An unsized
array of type T[], cannot be implicitly converted to a a constant sized array of type T[N].

8 On expiration of the cxvalue, the value is assigned back to the argument lvalue expression using a resolved assignment
expression as if the expression Arg = Param were written’. The argument expression must be of a type or able to convert
to a type that has defined copy-initialization to and assignment from the parameter type. The lifetime of the cxvalue
begins at argument expression evaluation, and ends after the function returns. A cxvalue argument is passed by-address
to the caller.

9 If the Ivalue passed to an output or input/output parameter does not alias any other parameter passed to that
function, an implementation may avoid the creation of excess temporaries by passing the address of the Ivalue instead of
creating the cxvalue.

10 When a function is called, any parameter of object type must have completely defined type, and any parameter of
array of object type must have completely defined element type.? The lifetime of a parameter ends on return of the
function in which it is defined.® Initialization and destruction of each parameter occurs within the context of the calling
function.

11 The value of a function call is the value returned by the called function.
12 A function call is an lvalue if the result type is an lvalue reference type; otherwise it is a prvalue.

13 If a function call is a prvalue of object type, the type of the prvalue must be complete.

"The argument expression is not re-evaluated after the call, so any side effects of the call occur only before the call.

8HLSL output and input/output parameters are passed by value, so they must also have complete type.

9As stated above cxvalue parameters are passed-by-address, so the expiring parameter is the reference to the address, not the cxvalue. The
cxvalue expires in the caller.

Working Draft

6 Statements [Stmt]

statement:
labeled-statement
attribute-specifier-sequencep; expression-statement
attribute-specifier-sequenceyp; compound-statement
attribute-specifier-sequence,p; iteration-statement
attribute-specifier-sequence,p; selection-statement
declaration-statement

6.1 Label Statements [Stmt.Label]

1 The optional attribute-specifier-sequence applies to the statement that immediately follows it.

6.2 Attributes [Stmt.Attr]

6.2.1 Unroll Attribute [Stmt.Attr.Unroll]

1 The [unroll] attribute is only valid when applied to iteration-statements. It is used to indicate that iteration-statements
like for, while and do while can be unrolled. This attribute qualifier can be used to specify full unrolling or partial
unrolling by a specified amount. This is a compiler hint and the compiler may ignore this directive.

2 The unroll attribute may optionally have an unroll factor represented as a single argument n that is an integer constant
expression value greater than zero. If n is not specified, the compiler determines the unrolling factor for the loop. The
[unroll] attribute can not be applied to the same iteration-statement as the [Loop] attribute.

6.2.2 Loop Attribute [Stmt.Attr.Loop]

1 The Attribute [loop] tells the compiler to execute each iteration of the loop. In other words, its a hint to indicate
a loop should not be unrolled. Therefore it is not compatible with the [unroll] attribute.

29

7 Declarations [Decl]

7.1 Preamble [Decl.Pre]

1 Declarations generally specify how names are to be interpreted. Declarations have the form

declaration-seq:
declaration
declaration-seq declaration

declaration:
name-declaration
special-declaration
empty-declaration

name-declaration:
variable-declaration
function-declaration
namespace-declaration
record-declaration
template-declaration
type-alias-declaration

special-declaration:
export-declaration-group
cbuftfer-declaration-group

empty-declaration: ;

7.2 Specifiers [Decl.Spec]

7.2.1 General [Decl.Spec.General]

1 The specifiers that can be used in a declaration are

decl-specifier:
function-specifier

7.2.2 Function specifiers [Decl.Spec.Fct]
1 A function-specifier can be used only in a function declaration.

function-specifier:
export

2 The export specifier denotes that the function has program linkage (3.6.1).

3 The export specifier cannot be used on functions directly or indirectly within an unnamed namespace.
4 Functions with program linkage can also be specified in export-declaration-group (7.7).
5

If a function is declared with an export specifier then all redeclarations of the same function must also use the
export specifier or be part of export-declaration-group (7.7).

30

Initializers

7.3 Declarators [Decl.Decl]

7.4 |Initializers [Decl.Init]

1 The process of initialization described in this section applies to all initializers regardless of the context.
initializer:
brace-or-equal-initializer
(expression-list)

brace-or-equal-initializer:
= initializer-clause
braced-init-list

initializer-clause:
assignment-expression
braced-init-list

braced-init-list:
{ initializer-list ,opt }

{}

initializer-list:
initializer-clause
initializer-list , initializer-clause

7.4.1 Aggregate Initialization [Decl.Init.Agg]
1 An aggregate is a vector, matrix, array, or class.

2 The subobjects of an aggregate have a defined order. For vectors and arrays the order is increasing subscript order.
For matrices it is increasing subscript order with the subscript nesting such that in the notation Mat [M] [N], the ordering
is Mat[0][0]... M at[0][N]...Mat[M][0]...Mat[M][N]. For classes the order is base class, followed by member subobjects
in declaration order.

3 A flattened ordering of subobjects can be produced by performing a depth-first traversal of the subobjects of an
object following the defined subobject ordering.

4 Each braced initializer list is comprised of zero or more initializer-clause expressions, which is either another braced
initializer list or an expression which generates a value that either is or can be implicitly converted to an rvalue. Each
assignment-expression is an object, which may be a scalar or aggregate type. A flattened initializer sequence is a sequence
of expressions constructed by a depth-first traversal over each assignment-expression in an initializer-list and performing
a depth-first traversal accessing each subobject of the assignment-expression.

5 If the target object is an array of unknown size, the object is assumed to have m possible elements during parsing,
where m > 0.

6 An initializer-list is a valid initializer if for each element E, noq m in the target object’s flattened ordering there is
a corresponding expression E,, in the flattened initializer sequence, which can be implicitly converted to the element'’s
type. For arrays of unknown size, the total number of expressions in the flattened initializer sequence must be a multiple
of the array’s base element type.

7 Aninitializer-list is invalid if the flattened initializer sequence contains more or fewer elements than the target object’s
flattened ordering, or if any initializer I,, cannot be implicitly converted to the corresponding element E,'s type.

Working Draft

Export Declarations

7.5 Function Definitions [Decl.Function]
7.6 Attributes [Decl.Attr]
7.6.1 Semantic Annotations [Decl.Attr.Semantic]
7.6.2 Entry Attributes [Decl.Attr.Entry]
7.7 Export Declarations [Decl.Export]

1 One or more functions with external linkage can be also specified in the form of

export-declaration-group:
export { function-declaration-seqqp: }

function-declaration-seq:
function-declaration function-declaration-seqopt

2 The export specifier denotes that every function-declaration included in function-declaration-seq has external linkage

(3.6.2).
3 The export-declaration-group declaration cannot appear directly or indirectly within an unnamed namespace.
4 Functions with external linkage can also be declared with an export specifier (7.2.2).

5 If a function is part of an export-declaration-group then all redeclarations of the same function must also be part on
a export-declaration-group or be declared with an export specifier (7.2.2).

Working Draft

8 Overloading [Overload]

1 HLSL inherits much of its overloading behavior from C++. This chapter is extremely similar to 1SO
C++ standard (2011) clause [over]. Notable differences exist around HLSL's parameter modifier keywords,
program entry points, and overload conversion sequence ranking.

2 When a single name is declared with two or more different declarations in the same scope, the name is overloaded.
A declaration that declares an overloaded name is called an overloaded declaration. The set of overloaded declarations
that declare the same overloaded name are that name's overload set.

3 Only function and template declarations can be overloaded; variable and type declarations cannot be overloaded.

8.1 Overloadable Declarations [Overload.Decl]

1 This section specifies the cases in which a function declaration cannot be overloaded. Any program that contains an
invalid overload set is ill-formed.

2 In overload set is invalid if:
e One or more declaration in the overload set only differ by return type.
int Yeet();
uint Yeet(); // ill —formed: decls differ only by return type
e An overload set contains more than one member function declarations with the same parameter-type-list, and one
of those declarations is a static member function declaration (10.1).

class Doggo {
static void pet();

void pet(); // ill —formed: static pet has the same parameter—type—Ilist
void pet() const; // ill —formed: static pet has the same parameter—type—Ilist
void wagTail (); // valid: no conflicting static declaration.
void wagTail() const; // valid: no conflicting static declaration.

static void bark(Doggo D);
void bark(); // valid: static bark parameter—type—Ilist is different
void bark() const; // valid: static bark parameter—type—list is different

b

e An overload set contains more than one entry function declaration (7.6.2).

[shader (" vertex”)]
void VS();
void VS(int); // valid: only one entry point.

[shader (" vertex”)]
void Entry();

[shader (" compute”)]
void Entry(int); // ill —formed: an overload set cannot have more than one entry func

e An overload set contains more than one function declaration which only differ in parameter declarations of equivalent
types.

void F(int4 |);
void F(vector<int, 4> 1); // ill —formed: int4 is a type alias of vector<int, 4>

33

Overload Resolution

e An overload set contains more than one function declaration which only differ in const specifiers.

void G(int);
void G(const int); // ill —formed: redeclaration of G(int)
void G(int) {}
void G(const int) {} // ill —formed: redefinition of G(int)
e An overload set contains more than one function declaration which only differ in parameters mismatching out and
inout.
void H(int);
void H(in int); // valid: redeclaration of H(int)
void H(inout int); // valid: overloading between in and inout is allowed

void I(in int);
void |(out int); // valid: overloading between in and out is allowed

void J(out int);
void J(inout int); // ill —formed: Cannot overload based on out/inout mismatch

8.2 Overload Resolution [Overload.Res]

1 Overload resolution is process by which a function call is mapped to a the best overloaded function declaration.
Overload resolution uses set of functions called the candidate set, and a list of expressions that comprise the argument
list for the call.

2 Overload resolution selects the function to call in the following contexts!:
e invocation of a function named in a function call expression;
e invocation of a function call operator on a class object named in function call syntax;
e invocation of the operator referenced in an expression;
e invocation of a user-defined conversion for copy-initialization of a class object;

e invocation of a conversion function for initialization of an object of a nonclass type from an expression of class
type.

3 In each of these contexts a unique method is used to construct the overload candidate set and argument expression
list.

8.2.1 Candidate Functions and Argument Lists [Overload.Res.Sets]

ISO C++ standard (2011) goes into a lot of detail in this section about how candidate functions and
argument lists are selected for each context where overload resolution is performed. HLSL matches C++ for
the contexts that HLSL inherits. For now, this section will be left as a stub, but HLSL inherits the following
sections from C+4+:

¢ [over.call.func]

¢ [over.call.object]

¢ [over.match.oper]

¢ [over.match.copy]

e [over.match.conv]

IDXC only supports overload resolution for function calls and invocation of operators during expressions. Clang will support all contexts
listed.

Working Draft

Overload Resolution

8.2.2 Viable Functions [Overload.Res.Viable]

1 Given the candidate set and argument expressions as determined by the relevant context (8.2.1), a subset of viable
functions can be selected from the candidate set.

2 A function candidate F'(P,...P,,) is not a viable function for a call with argument list Ay...A,, if:
e The function has fewer parameters than there are arguments in the argument list (m < n).

e The function has more parameters than there are arguments to the argument list (m > n), and function parameters
P, 41...P,, do not all have default arguments.

e There is not an implicit conversion sequence that converts each argument A; to the type of the corresponding
parameter P;.

8.2.3 Best Viable Function [Overload.Res.Best]

1 For an overloaded call with arguments Ajy...A,, each viable function F(Fy...P,,), has a set of implicit conversion
sequences ICSy(F)...ICS,,(F) defining the conversion sequences for each argument A; to the type of parameter P;.

2 A viable function F' is defined to be a better function than another viable function F* if for all arguments IC'S;(F')
is not a worse conversion sequence than IC'S;(F"), and:

e for some argument j, IC'S;(F) is a better conversion than ICS;(F") or,

e in the context of an initialization by user-defined conversion, the conversion sequence from the return type of F' to
the destination type is a better conversion sequence than the return type of F* to the destination type or,

e [is a non-template function and F* is a function template specialization, or

e I and F* are both function template specializations and F' is more specialized than F* according to function
template partial ordering rules (11.2).

3 If there is one viable function that is a better function than all the other viable functions, it is the selected function;
otherwise the call is ill-formed.

4 If the resolved overload is a function with multiple declarations, and if at least two of these declarations specify a
default argument that made the function viable, the program is ill-formed.

void F(int X = 1);
void F(float Y = 2.0f);

void Fn() {
F(1); // Okay.
F(3.0f); // Okay.
F(); // 11l —formed.
}

8.2.4 Implicit Conversion Sequences [Overload.ICS]

1 An implicit conversion sequence is a sequence of conversions which converts a source value to a prvalue of destination
type. In overload resolution the source value is the argument expression in a function call, and the destination type is
the type of the corresponding parameter of the function being called.

2 When a parameter is a cxvalue an inverted implicit conversion sequence is required to convert the parameter type
back to the argument type for writing back to the argument expression Ivalue. An inverted implicit conversion sequence
must be a well-formed implicit conversion sequence where the source value is the implicit cxvalue of the parameter type,
and the destination type is the argument expression’s Ivalue type.

3 A well-formed implicit conversion sequence is either a standard conversion sequence, or a user-defined conversion
sequence.

4 In the following contexts an implicit conversion sequence can only be a standard conversion sequence:

e Argument conversion for a user-defined conversion function.

Working Draft

Overload Resolution

e Copying a temporary for class copy-initialization.
e When passing an initializer-list as a single argument.
e Copy-initialization of a class by user-defined conversion.

5 An implicit conversion sequence models a copy-initialization unless it is an inverted implicit conversion sequence when
it models an assignment. Any difference in top-level cv-qualification is handled by the copy-initialization or assignment,

and does not constitute a conversion?.

6 When the source value type and the destination type are the same, the implicit conversion sequence is an identity
conversion, which signifies no conversion.

7 Only standard conversion sequences that do not create temporary objects are valid for implicit object parameters or
left operand to assignment operators.

8 If no sequence of conversions can be found to convert a source value to the destination type, an implicit conversion
sequence cannot be formed.

9 If several different sequences of conversions exist that convert the source value to the destination type, the implicit
conversion sequence is defined to be the unique conversion sequence designated the ambiguous conversion sequence. For
the purpose of ranking implicit conversion sequences, the ambiguous conversion sequence is treated as a user-defined
sequence that is indistinguishable from any other user-defined conversion sequence. If overload resolution selects a
function using the ambiguous conversion sequence as the best match for a call, the call is ill-formed.

8.2.4.1 Standard Conversion Sequences [Overload.ICS.SCS]

1 The conversions that comprise a standard conversion sequence and the composition of the sequence are defined in
Chapter 4.

2 Each standard conversion is given a category and rank as defined in the table below:

Conversion Category Rank Reference
No conversion Identity

Lvalue-to-rvalue 4.1
Array-to-pointer Lvalue Transformation Exact Match 4.2
Qualification Qualification Adjustment 4.14
Scalar splat (without conversion) Scalar Extension Extension 4.10

Integral promotion 45 & 4.15.1

Floating point promotion Promotion Promotion 46 & 4.15.2
Component-wise promotion 4.13
Scalar splat promotion Scalar Extension Promotion Promotion Extension 4.10
Integral conversion 4.5
Floating point conversion 4.6
Floating-integral conversion Conversion Conversion 4.7
Boolean conversion 4.8
Component-wise conversion 4.13
Scalar splat conversion Scalar Extension Conversion Conversion Extension 4.10
Vector truncation (without conversion) Dimensionality Reduction Truncation 4.12
Vector truncation promotion Dimensionality Reduction Promotion | Promotion Truncation 4.12
Vector truncation conversion Dimensionality Reduction Conversion | Conversion Truncation 412

3 If a scalar splat conversion occurs in a conversion sequence where all other conversions are Exact Match rank, the
conversion is ranked as Extension. If a scalar splat occurs in a conversion sequence with a Promotion conversion, the
conversion is ranked as Promotion Extension. If a scalar splat occurs in a conversion sequence with a Conversion
conversion, the conversion is ranked as Conversion Extension.

2" Top-level” cv-qualification refers to the qualification of the value. This means an parameter of type T can be initialized by a argument

of type const T. This does not mean that a parameter of type inout T can be initialized with a argument of type const T because there is
no valid inverted conversion system to assign back to a value of type const T.

Working Draft

Overload Resolution

4 If a vector truncation conversion occurs in a conversion sequence where all other conversions are Exact Match rank,
the conversion is ranked as Truncation. If a vector truncation occurs in a conversion sequence with a Promotion
conversion, the conversion is ranked as Promotion Truncation. If a vector truncation occurs in a conversion sequence
with a Conversion conversion, the conversion is ranked as Conversion Truncation.

5 Otherwise, the rank of a conversion sequence is determined by considering the rank of each conversion.
6 Conversion sequence ranks are ordered from better to worse as:

Exact Match

Extension

Promotion

Promotion Extension

Conversion

Conversion Extension

Truncation

Promotion Truncation

© ®© N o 0 Bk~ w o=

Conversion Truncation

8.2.4.2 Comparing Implicit Conversion Sequences [Overload.ICS.Comparing]

1 A partial ordering of implicit conversion sequences exists based on defining relationships for better conversion sequence,
and better conversion. If an implicit conversion sequence ICS(f) is a better conversion sequence than ICS(f‘), then
the inverse is also true: IC'S(f*) is a worse conversion sequence than ICS(f). If ICS(f) is neither better nor worse
than IC'S(f*), the conversion sequences are indistinguishable conversion sequences.

2 A standard conversion sequence is always better than a user-defined conversion sequence.

3 Standard conversion sequences are ordered by their ranks. Two conversion sequences with the same rank are indis-
tinguishable unless one of the following rules applies:

o If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from class B,

binding of a expression of type C to a cxvalue of type B is better than binding an expression of type C to a
cxvalue of type A,

conversion of C to B is better than conversion or C to A,

binding of a expression of type B to a cxvalue of type A is better than binding an expression of type C to a
cxvalue of type A,

conversion of B to A is better than conversion of C to A.

Working Draft

9 Resource Types [Resources]

Resources are built-in intangible types representing memory with an external interface.
These take the form of Typed Buffers, Raw Buffers, Textures, Constant Buffers and Samplers.

Buffer and Texture types can be read-only or writable.

9.1 Typed Buffers [Resources.tybufs]

The typed buffer class template represents a one-dimensional resource containing an array of a single given type. lts
contents are indexed by typed access to each element Types may have their formats converted upon load.

The element type may be any type up to 16 bytes in size. Elements may be padded to 16 bytes if the element type is
smaller than 16 bytes.

All typed buffers can be read through subscript operators or Load methods. Writable typed buffers can be written through
subscript operators.

Where T can be any arithmetic type 3.8.1 or a vector with a maximum of four elements containing such an arithmetic
type. The total size of a single contained element must be less than 16 bytes.

Typed buffers perform format conversions on load such that the underlying data gets converted to the destination type.

template <typename T = float4 >
class Buffer {
public:
Buffer ();
Buffer(const Buffer &buf);
Buffer &operator=(Buffer &buf);

void GetDimensions(out uint width) const;

// Element access.

T operator[](int index) const;

T Load(in int index) const;

T Load(in int index, out uint status) const;

+s

template <typename T>
class RWBuffer : public Buffer {
public:

RWBuffer ();

RWBuffer (RWBuffer buf);

RWBuffer &operator=(RWBuffer &buf);

// element access
T &operator[](int n);

9.1.1 Constructors [Resources.tybufs.ctrs]
Read-only Buffers can be defined with explicit or implicit template parameter types.

Buffer bufl;
Buffer<> buf2;
Buffer<float4 > buf3;

38

Raw Buffers

Since float4 is the default type, all of these definitions are equivalent.
RWBuffers must be defined with explicit template parameter types.
RWBuffer<float4 > buf;

When defined at global scope, typed buffers are bound to externally-defined backing stores using the explicit binding
location if provided or the implicit binding if not (9.8).

When defined at local scope, typed buffers represent local references that can be associated with global buffers when
assigned, but must be resolvable to a unique global buffer declaration.

In the case of a buffer array declaration, a unique global declaration references all the buffers in the array.
Local buffer assignments can map to different resource array elements depending on runtime values.

Buffer<int> grobuf;
RWBuffer<int> grwbuf;
void main() {
Buffer<int> Irobuf = grobuf;
RWBuffer<int> Irwbuf = grwbuf;

}

Buffers cannot be implicitly nor explicitly cast from one type to another. This means that local buffers can only be
assigned from buffers with the same element type.

9.1.2 Dimensions [Resources.tybufs.dims]
The size of a typed buffer can be retrieved using the GetDimensions method.

void GetDimensions(out uint width) const;

This returns the full length, in elements of the buffer through the width out parameter.

9.1.3 Element Access [Resources.tybufs.access]

The contents of typed buffers can be retrieved using the Load methods or the subscript operator.

T Load(in int index) const;
T operator[](int index) const;

These each return the element of the buffer’s type at the given index index.

An additional Load method returns the indicated element just as the other, but also takes a second status parameter
that returns information about the accessed resource.

T Load(in int index, out uint status) const;

The status parameter returns an indication of whether all of the retrieved value came from fully mapped parts of the
resource. This parameter must be passed to the built-in function CheckAccessFullyMapped (9.7) in order to interpret
it.

Writable buffers have an additional subscript operator that allows assignment to an element of the buffer. It behaves as
if it returns a reference to that element.

T &operator [](int index);

Partial writes aren't allowed. Assignment to individual vector elements will result in an error.

9.2 Raw Buffers [Resources.rawbufs]
Raw buffers are one-dimensional resources of arbitrary memory layout. They are either ByteAddressBuffers or Structured-

Buffers. ByteAddressBuffers enable per-byte access to the raw data while StructuredBuffers have an associated structure
type that determines how they are indexed. This type can be a scalar, vector, matrix, or user-defined struct.

Working Draft

Byte Access Buffers

9.3 Byte Access Buffers [Resources.babufs]

class ByteAddressBuffer {

public:
ByteAddressBuffer ();
ByteAddressBuffer(const ByteAddressBuffer &buf);
ByteAddressBuffer &operator=(ByteAddressBuffer &buf);

void GetDimensions(out uint size) const;

// Element access.

uint Load(in uint offset) const;
uint2 Load2(in uint offset) const;
uint3 Load3(in uint offset) const;
uint4 Load4(in uint offset) const;
template<typename T>

T Load(in uint offset) const;

uint Load(in uint offset, out uint status) const;
uint2 Load2(in uint offset, out uint status) const;
uint3 Load3(in uint offset, out uint status) const;
uint4 Load4(in uint offset, out uint status) const;
template<typename T>

T Load(in uint offset, out uint status) const;

+

class RWByteAddressBuffer : public ByteAddressBuffer {
public:
RWByteAddressBuffer ();
RWByteAddressBuffer (const RWByteAddressBuffer &buf);
RWByteAddressBuffer &operator=(RWByteAddressBuffer &buf);

// Element assignment.

void Store(in uint offset, in uint value);
void Store2(in uint offset, in uint2 value);
void Store3(in uint offset, in uint3 value);
void Store4(in uint offset, in uint4 value);
template<typename T>

void Store(in uint offset, in T value);

// 32—bit integer atomic arithmetic/bitwise operations.

void InterlockedAdd(in uint offset, in uint value);
void InterlockedAdd (in uint offset, in uint value, out uint original);
void InterlockedAnd(in uint offset, in uint value);
void InterlockedAnd (in uint offset, in uint value, out uint original);
void InterlockedOr(in uint offset, in uint value);
void InterlockedOr(in uint offset, in uint value, out uint original);
void InterlockedXor(in uint offset, in uint value);
void InterlockedXor(in uint offset, in uint value, out uint original);

// 32—bit integer atomic comparison operations

void InterlockedMin(in uint offset, in int value);

void InterIockedMin(m uint offset, in uint value);

void InterlockedMin(in uint offset, in int value, out int original);
void InterlockedMin(in uint offset, in uint value, out uint original);
void InterIockedMax(in uint offset, in int value);

void InterlockedMax (in uint offset, in uint value);

void InterlockedMax(in uint offset, in int value, out int original);
void InterlockedMax(in uint offset, in uint value, out uint original);

// 32—bit integer atomic compare/exchange operations

Working Draft

Byte Access Buffers

void InterlockedCompareStore(in uint offset, in uint compare, in uint value);
void InterlockedExchange(in uint offset, in uint value, out uint original);
void InterlockedCompareExchange(in uint offset, in uint compare, in uint value,

out uint original);

// 64—bit integer atomic arithmatic/bitwise operations

void InterlockedAdd64(in uint offset, in uint64_t value);

void InterlockedAdd64(in uint offset, in uint64_t value, out uint64_t original);
void InterlockedAnd64(in uint offset, in uint64_t value);

void InterlockedAnd64(in uint offset, in uint64_t value, out uint64_t original);
void InterlockedOr64 (in uint offset, in uint64_t value);

void InterlockedOr64(in uint offset, in uint64_t value, out uint64_t original);
void InterlockedXor64(in uint offset, in uint64_t value);

void InterlockedXor64(in uint offset, in uint64_t value, out uint64_t original);

// 64—bit integer atomic comparison operations

void InterlockedMin64(in uint offset, in int64_t value);

void InterlockedMin64(in uint offset, in int64_t value, out int64_t original);
void InterlockedMin64(in uint offset, in uint64_t value);

void InterlockedMin64(in uint offset, in uint64_t value, out uint64_t original);
void InterlockedMax64(in uint offset, in int64_t value);

void InterlockedMax64(in uint offset, in int64_t value, out int64_t original);
void InterlockedMax64(in uint offset, in uint64_t value);

void InterlockedMax64(in uint offset, in uint64_t value, out uint64_t original);

// 64—bit integer atomic compare/exchange operations
void InterlockedCompareStore64(in uint offset, in uint64_t compare,
in uint64_t value);
void InterlockedExchange64(in uint offset, in int64_t value,
out int64_t original);
void InterlockedCompareExchange64(in uint offset, in uint64_t compare,
in uint64_t value, out int64_t original);

// 32—bit float atomic compare/exchange operations
void InterlockedCompareStoreFloatBitwise(in uint byteOffest,
in float compare, in float value);
void InterlockedExchangeFloat(in uint byteOffest, in float value,
out float original);

void InterlockedCompareExchangeFloatBitwise(in uint byteOffest,

in float compare,

in float value,

out float original);

}s

9.3.1 Constructors [Resources.babufs.ctrs]

Since their contents are viewed as raw bytes, ByteAddressBuffers are defined without any type parameters.

ByteAddressBuffer robuf;
RWByteAddressBuffer rwbuf;

When defined at global scope, ByteAccessBuffers are bound to externally-defined backing stores using the explicit binding
location if provided or the implicit binding if not (9.8).

When defined at local scope, ByteAccessBuffers represent local references that can be associated with global ByteAc-
cessBuffers when assigned, but must be resolvable to a unique global buffer declaration.

ByteAddressBuffer grobuf;
RWByteAddressBuffer grwbuf;
void main() {
ByteAddressBuffer lrobuf = grobuf;
RWByteAddressBuffer Irwbuf = grwbuf;

}

Working Draft

Byte Access Buffers

9.3.2 Dimensions [Resources.babufs.dims]

The size of a ByteAddressBuffer can be retrieved using the GetDimensions method.

void GetDimensions(out uint size) const;

This returns the full size of the buffer in bytes through the size out parameter.

9.3.3 Element Access [Resources.babufs.access]

The contents of ByteAddressBuffers can be retrieved using the Load methods.

uint Load(in uint offset) const;

uint2 Load2(in uint offset) const;
uint3 Load3(in uint offset) const;
uint4 Load4(in uint offset) const;

These each return the bytes at the given byte offset into the buffer offset in the form of one or more unsigned integers.
The offset address must be a multiple of 4. Each of the variants returns a number of bytes corresponding to the size
of the uint vector returned.

An additional templated load method allows returning the bytes at the given byte offset in the form of the type given in
the template parameter. This can be a scalar, vector, matrix, or user-defined struct.

template<typename T>
T Load(in uint offset) const;

The alignment requirements of offset for this operation is the alignment requirement of an object of type T in the
device memory space (1.7.2).

Additional Load methods return the same values as the others, but also take a second status parameter that returns
information about the accessed resource.

uint Load(in uint offset, out uint status) const;
uint2 Load2(in uint offset, out uint status) const;
uint3 Load3(in uint offset, out uint status) const;
uint4 Load4(in uint offset, out uint status) const;
template<typename T>

T Load(in uint offset, out uint status) const;

The status parameter returns an indication of whether all of the retrieved value came from fully mapped parts of the
resource. This parameter must be passed to the built-in function CheckAccessFullyMapped (9.7) in order to interpret
it.

9.3.4 Atomic Operations [Resources.babufs.atomics]

RWByteAddressBuffers have a suite of atomic methods that perform the given operation on type-appropriate-sized
element data at the given buffer offset in a way that ensures no contention from other threads performing other operations.
Each of these operates on two 32 or 64 bit values: the given parameter value and the buffer value. The buffer value is a
32 or 64 bit value at a given offset into the buffer. Each method has an overload that returns the original buffer value
before the atomic operation was performed.

void InterlockedAdd(in uint offset, in uint value);
void InterlockedAdd (in uint offset, in uint value, out uint original);
void InterlockedAnd(in uint offset, in uint value);
void InterlockedAnd (in uint offset, in uint value, out uint original);
void InterlockedOr(in uint offset, in uint value);
void InterlockedOr(in uint offset, in uint value, out uint original);
void InterlockedXor(in uint offset, in uint value);
void InterlockedXor(in uint offset, in uint value, out uint original);

Perform atomic addition, bitwise and, bitwise or, or bitwise exclusive or on the 32-bit integer buffer value at the byte
offset offset and the provided value. Store the result to that offset buffer location, optionally returning the original
buffer value through original.

Working Draft

Byte Access Buffers

void InterlockedMin(in uint offset, in int value);

void Interlockedl\/lin(in uint offset, in uint value);

void InterlockedMin(in uint offset, in int value, out int original);
void InterlockedMin(in uint offset, in uint value, out uint original);
void InterIockedMax(in uint offset, in int value);

void InterlockedMax (in uint offset, in uint value);

void InterlockedMax(in uint offset, in int value, out int original);

void InterlockedMax(in uint offset, in uint value, out uint original);

Perform the sign-approrpriate minimum or maximum comparison on the 32-bit integer buffer value at the byte offset
offset and the provided value. Store the lesser or greater value, as appropriate, to that offset buffer location, optionally
returning the original buffer value through original.

void InterlockedExchange(in uint offset, in uint value, out uint original);

Performs an atomic exchange of the 32-bit integer buffer value at the byte offset offset with the provided value. Stores
value at the offset buffer location and returns the original buffer value through original.

void InterlockedCompareStore(in uint offset, in uint compare, in uint value);
void InterlockedCompareExchange(in uint offset, in uint compare, in uint value,
out uint original);

Perform an atomic exchange of or store to the 32-bit integer buffer value at the byte offset offset with the provided
value if the value at that location matches the value of compare. InterlockedCompareExchange returns the original
buffer value through original.

void InterlockedAdd64 (in uint offset, in uint64_t value);
void InterlockedAdd64(in uint offset, in uint64_t value, out uint64_t original);
void InterlockedAnd64(in uint offset, in uint64_t value);

void InterlockedAnd64(in uint offset, in uint64_t value, out uint64_t original);
void InterlockedOr64(in uint offset, in uint64_t value);
void InterlockedOr64(in uint offset, in uint64_t value, out uint64_t original);
void InterlockedXor64 (in uint offset, in uint64_t value);
void InterlockedXor64(in uint offset, in uint64_t value, out uint64_t original);

Perform atomic addition, bitwise and, bitwise or, or bitwise exclusive or on the 64-bit integer buffer value at the byte
offset offset and the provided value. Store the result to that offset buffer location, optionally returning the original
buffer value through original.

void InterlockedMin64
void InterlockedMin64

(in uint offset, in int64_t value);
(in uint offset, in uint64_t value);
void InterlockedMin64(in uint offset, in int64_t value, out int64_t original);
void InterlockedMin64(in uint offset, in uint64_t value, out uint64_t original);
void InterlockedMax64(in uint offset, in int64_t value);
void InterlockedMax64(in uint offset, in uint64_t value);
void InterlockedMax64(in uint offset, in int64_t value, out int64_t original);
(in

void InterlockedMax64 uint offset in uint64_t value, out uint64_t original);

Perform the sign-approrpriate minimum or maximum comparison on the 64-bit integer buffer value at the byte offset
offset and the provided value. Store the lesser or greater value, as appropriate, to that offset buffer location, optionally
returning the original buffer value through original.

void InterlockedExchange64(in uint offset, in uint64_t value, out uint64_t original);

Performs an atomic exchange of the 64-bit integer buffer value at the byte offset offset with the provided value. Stores
value at the offset buffer location and returns the original buffer value through original.

void InterlockedCompareStore64(in uint offset, in uint64_t compare,
in uint64_t value);
void InterlockedCompareExchange64(in uint offset, in uint64_t compare,

in uint64_t value, out uint64_t original);

Working Draft

Structured Buffers

Perform an atomic exchange of or store to the 64-bit integer buffer value at the byte offset offset with the provided
value if the value at that location matches the value of compare. InterlockedCompareExchange returns the original

buffer value through original.

void InterlockedExchangeFloat(in uint byteOffest, in float value,
out float original);

Performs an atomic exchange of the 32-bit float buffer value at the byte offset offset with the provided value. Stores
value at the offset buffer location and returns the original buffer value through original.

void InterlockedCompareStoreFloatBitwise(in uint byteOffest, in float compare,
in float value);

void InterlockedCompareExchangeFloatBitwise(in uint byteOffest,
in float compare,

in float value,
out float original);

Perform an atomic exchange of or store to the 32-bit float buffer value at the byte offset offset with the provided value if
the value at that location matches the value of compare in a bitwise comparison. InterlockedCompareExchangeFloatBitwise

returns the original buffer value through original.

Unlike standard floating point comparisons, values will only match if the bit representation matches which can miss some
matching values that have different bit repesantations in addition to ignoring floating point rules surrounding NaN and

infinite values.

9.4 Structured Buffers [Resources.stbufs]

Structured buffers are raw buffers with associated types that facilitate indexing. Unlike typed buffers, they perform no
format conversions. The buffer contents is treated as raw data. Accessors return the contained bytes as the target
type with no conversions or interpolations applied. Structured buffers can be defined with scalar, vector, matrix, or

user-defined struct elements.

Structured buffers can be read-only, writable, appendable, or consumable. Writable buffers can have their elements
assigned in arbitrary locations. Append structured buffers can only have elements added to the end. Consume structured
buffers can only have elements removed from the end.

template <typename T>

class StructuredBuffer {

public:
StructuredBuffer ();
StructuredBuffer(const StructuredBuffer &buf);
StructuredBuffer &operator=(StructuredBuffer &buf);

void GetDimensions(out uint count, out uint stride) const;

// Element access.

T operator[](int index) const;

T Load(in int index) const;

T Load(in int index, out uint status) const;

s

template <typename T>
class RWStructuredBuffer : public StructuredBuffer {
public:
RWStructuredBuffer ();
RWStructuredBuffer(const RWStructuredBuffer &buf);
RWStructuredBuffer &operator=(RWStructuredBuffer &buf);

// Element assignment.
T &operator [](int index);

Working Draft

Structured Buffers

// Hidden counter increment/decrement.
uint IncrementCounter ();
uint DecrementCounter ();

b

template <typename T>

class AppendStructuredBuffer {

public:
AppendStructuredBuffer ();
AppendStructuredBuffer(const AppendStructuredBuffer &buf);
AppendStructuredBuffer &operator=(AppendStructuredBuffer &buf);

void GetDimensions(out uint count, out uint stride) const;

void Append(in T value);
}s

template <typename T>

class ConsumeStructuredBuffer {

public:
ConsumeStructuredBuffer ();
ConsumeStructuredBuffer(const ConsumeStructuredBuffer &buf);
ConsumeStructuredBuffer &operator=(ConsumeStructuredBuffer &buf);

void GetDimensions(out uint count, out uint stride) const;

T Consume ();
}s

9.4.1 Constructors [Resources.stbufs.ctrs]

Structured buffers must be defined with explicit template parameter types.

struct S {int i; float f;};
StructuredBuffer<S> robufl;
StructuredBuffer<float4 > robuf2;
StructuredBuffer<float2x3 > robuf3;

RWStructuredBuffer<S> rwbufl;
RWStructuredBuffer<float4 > rwbuf2;
RWStructuredBuffer<float2x3> rwbuf3;

AppendStructuredBuffer<S> apbufl;
AppendStructuredBuffer<float4 > apbuf2;
AppendStructuredBuffer<float2x3 > apbuf3;

ConsumeStructuredBuffer<S> cobufl;
ConsumeStructuredBuffer<float4 > cobuf2;
ConsumeStructuredBuffer<float2x3> cobuf3;

When defined at global scope, structured buffers are bound to externally-defined backing stores using the explicit binding
location if provided or the implicit binding if not (9.8).

When defined at local scope, structured buffers represent local references that can be associated with global buffers when
assigned, but must be resolvable to a unique global buffer declaration.

Resource types contained in structs are only allocated registers when they are explicitly used. This includes
elements of arrays of resources as such array elements must be indexed with literals.

StructuredBuffer<int3x3> grobuf;

Working Draft

Structured Buffers

RWStructuredBuffer<int3x3> grwbuf;
AppendStructuredBuffer<int3x3> gapbuf;
ConsumeStructuredBuffer<int3x3> gcobuf;
void main() {
StructuredBuffer<int3x3> Irobuf = grobuf;
RWStructuredBuffer<int3x3> Ilrwbuf = grwbuf;
AppendStructuredBuffer<int3x3> |lbuf = gapbuf;
ConsumeStructuredBuffer<int3x3> Icobuf = gcobuf;

}

Structured buffer operands to the assignment operator must have the same element type.

9.4.2 Dimensions [Resources.stbufs.dims]

The structure count and stride of a structured buffer can be retrieved using the GetDimensions method.
void GetDimensions(out uint count, out uint stride);

This returns number of structured elements of the buffer through the count out parameter and the size of each element
in bytes through the stride out parameter.

9.4.3 Element Access [Resources.stbufs.access]

The contents of read-only StructuredBuffers and writable RWStructuredBuffers can be retrieved using the Load methods
or the subscript operator.

T Load(in int index) const;
T operator[](int index) const;
These each return the element of the buffer’s type at the given index index.

An additional Load method returns the indicated element just as the other, but also takes a second status parameter
that returns information about the accessed resource.

T Load(in int index, out uint status) const;
The status parameter returns an indication of whether all of the retrieved value came from fully mapped parts of the

resource. This parameter must be passed to the built-in function CheckAccessFullyMapped (9.7) in order to interpret
it.

Writable RWStructuredBuffers have an additional subscript operator that allows assignment to a structure element of
the buffer. It behaves as if it returns a reference to that element.

T &operator [](int index);

9.4.4 Counter Manipulation [Resources.stbufs.counter]

RWStructuredBuffers may have a hidden counter that can be incremented and decremented using methods.

uint IncrementCounter ();
uint DecrementCounter ();

Increment or decrements the hidden counter associated with the RWStructuredBuffer. IncrementCounter returns the
pre-increment value of the counter. DecrementCounter returns the post-decrement value of the counter.

9.4.5 Append [Resources.stbufs.append]

AppendStructuredBuffers can only be appended to as an output stream.

void Append(in T value);

Appends the value of the template parameter types to the end of the AppendStructuredBuffer. Subsequent appends
will continue to add elements to the end of the buffer.

Working Draft

Constant Buffers

9.4.6 Consume [Resources.cnstbufs.consume]

ConsumeStructuredBuffers can only have values pulled from them as an input stream.

T Consume ();

Removes and returns a value of the template parameter types from the end of the ConsumeStructuredBuffer.

9.5 Constant Buffers [Resources.cnbuf]

Constant buffers represent resources that contain read-only constant data in a well-defined memory layout.

9.5.1 Constant Buffer Declaration Block [Resources.cnbuf.cb]
1 A constant buffer can be declared using the cbuffer specifier.

cbuffer-declaration-group:
cbuffer name resource-binding,p: { cbuffer-declaration-seqqp: }

cbuffer-declaration-seq:
cbuffer-declaration
cbuffer-declaration-seq cbuffer-declaration

cbuffer-declaration:
variable-declaration
empty-declaration

2 The name of the cbuffer declaration group cannot be referenced from within the translation unit and is not required
to be unique.

3 Variable declarations in the cbuffer declaration group are called shader constants.

4 Shader constants can be referenced from anywhere in the translation unit after they are declared by directly using
the declaration name. This implies that all shader constants declared in a translation unit must have unique names, even
though they might be declared in different cbuffer declaration groups.

5 Variable declarations in the cbuffer declaration group cannot have groupshared or static variable modifiers.

6 Other declarations in the cbuffer declaration group such as namespace-declaration, record-declaration or function-
declaration are not allowed.

7 Nesting of cbuffer declaration groups is not allowed.
8 For example:

cbuffer MyConstants {
float4 CameraPos;

b

float4 getCameraPosition() {
return CameraPos;

}

9.5.2 Constant Buffer Class [Resources.cnbuf.cbclass]
1 Another way of declaring constant buffers is by using the ConstantBuffer<T> resource class.
2 The template parameter T must be a class type (10).

template <typename T>

class ConstantBuffer {

public:
ConstantBuffer ();
ConstantBuffer(const ConstantBuffer &buf);
ConstantBuffer &operator=(ConstantBuffer &buf);

Working Draft

Constant Buffers

i
3 The shader constants are the fields of the class type T. They can be referenced from anywhere within the translation
unit after the ConstantBuffer<T> declaration as if they were fields of the ConstantBuffer<T> class.
4 For example:

struct MyConstants {
float4 CameraPos;

s
ConstantBuffer<MyConstants> CB;

float4 getCameraPosition() {
return CB.CameraPos;

}

5 The layout rules for constant buffer declared with the ConstantBuffer<T> syntax are the same as for named cbuffer
declaration groups.

6 ConstantBuffer<T> can be defined at local scope to represent a local reference to a constant buffer that can be
associated with a global buffer when assigned. The reference must be resolvable to a unique global buffer declaration
before use.

7 Constant buffers cannot be implicitly nor explicitly cast from one type to another. This means that local ConstantBuffer
can only be assigned from ConstantBuffer with the same template type T.

9.5.3 Constant Buffer Layout [Resources.cnbuf.lay]
1 Layout of the constant buffer is implementation dependent. This section describes the layout that is used by DirectX.

2 A constant buffer is arranged like an array of 16-byte rows, or 4-component vectors of 32-bit elements. Shader
constants are arranged into the buffer in the order they were declared based on following rules.

3 Specific basic types are packed into the last used row of the buffer if they fit into the available space, starting at the
next available aligned position. These types include:

e scalar types
e vector types
e matrix types with only one row in column_major storage layout
4 If they do not fit the remaining space of the row, they will placed at the start a new 16-byte aligned row.

5 Vectors are aligned by the size of a single vector element type unless that alignment results in crossing the 16-byte
row boundary, in which case it is aligned to the next row.

6 Aggregate types like arrays and structures are always 16-byte row-aligned. If the aggregate ends with an element that
does not completely fill a row, the remaining space on the last row may be used by the next value.

7 Individual array elements are always 16-byte row aligned.

8 Matrix types with more than one row in column_major storage layout and matrix types in row_major storage layout
in are aligned to the 16-byte row. Each row in storage layout (each column for column_major matrix) is aligned to a
16-byte row.

9 Members of structured types used in constant buffers follow these same rules. Because structures are always 16-byte
row-aligned, the offset layout within the structure is independent of the particular structure instance location.

9.5.4 Packoffset annotations [Resources.cnbuf.po]

1 Shader constants declared in cbuffer declaration group can have an optional packoffset annotation added before
their ; terminal. If this annotation is added to one shader constant in a declaration group then it must be added to all
shader constants in that group.

Working Draft

CheckAccessFullyMapped

packoffset-annotation:
packoffset (packoffset-id packoffset-row packoffset-elementp:)

packoffset-id:one of
cC

packoffset-row:
digit
packoffset-row digit

packoffset-element:
. packoffset-element-id

packoffset-element-id:one of
Xyzwrghba

2 The packoffset annotation defines specific offset in the constant buffer where the shader constant is located.

3 The packoffset-row number is the index into the array of 16-byte rows of the constant buffer. Each row treated as a
vector of four 32-bit elements.

4 The packoffset-element identifies specific location within the vector where x or r is the first element of the vector, y
or g is the second one, z or b is the third one and w or a is the fourth, and last element of the vector.

5 Shader constant that has a structure, array or matrix type must always be 16-byte row-aligned. It means that if it
specifies a packoffset-element, it must have a value of x or r.

6 For example

cbuffer MyConstants {
float2 Pos : packoffset(cl.z);

b

The Pos shader constant will be located at byte offset 24 in the constant buffer MyConstants.

9.5.5 Default Constant Buffer [Resources.cnbuf.defcb]

1 All variables declarations in the global scope are implicitly added to default constant buffer called $Globals, unless
they are marked static, groupshared, or declare a resource or array of resources.

2 Layout rules for a default constant buffer are the same as for a named cbuffer declaration group.

3 Default constant buffer declarations can have an optional resource-binding annotation with a register-type ¢ or C
added before their ; terminal. This annotation does not define a virtual register binding but rather an index into an array
of 16-byte rows that represents the default constant buffer, similar to the packoffset annotation.

4 For example

float4 CameraPos : register(c2);

is equivalent to

cbuffer CB {
float4 CameraPos : packoffset(c2);
}

9.6 Samplers [Resources.samp]

9.7 CheckAccessFullyMapped [Resources.mapcheck]

The mapped status value returned by certain texture and buffer methods can be intrepreted by a built-in function:

bool CheckAccessFullyMapped(in uint status);

Working Draft

Resource Binding

This function returns true if the value was accessed from a fully committed resource, or from fully mapped pages of a
sparse resource. If any part of the return value was from unmapped memory, false is returned.

9.8 Resource Binding [Resources.binding]

Resources are bound to external memory using virtual registers within logical registers spaces. These can be specified
explicitly using attributes after the global resource declaration or implicitly by leaving them off.

resource-binding:
register(register-type bind-number)
register(register-type bind-number , space bind-number)
register-type: one of
tubscTUBSC
bind-number:
digit
bind-number digit

The register type indicates whether the binding is for a read-only (t/T), a writable (u/U), a constant buffer (b/B), or
a sampler (s/8). The register bind number indicates the register number at which the resource variable begins. The
optional second parameter indicates the virtual register space that the register belongs to.

Register type c/C defines layout information for the default constant buffer (9.5.5).
Sample syntax of virtual register binding attributes:

Buffer<float> robuf : register(t0, spaceQ);
RWBuffer<float> rwbuf : register(u0, space0);
SamplerState samp : register(s0, space0);
cbuffer cbuf : register (b0, space0) { float f; };

Each resource must have a unique register. Different resources cannot occupy the same register, but read-only and
writable buffers have separate namespaces and different logical register spaces have independent sets of register numbers.
Meaning the following is all allowed:

Buffer<float> mybuf : register(t0, space0);

Buffer<float> yourbuf : register(t0, spacel);
RWBuffer<float> hisbuf : register(u0, spaceQ);
RWBuffer<float> herbuf : register(u0, spacel)

An aggregate resource type can be:
e a struct containing one or more resources types
e an array of resource types
e an array or struct containing either of the above

Aggregate resource types with register annotations occupy the first register they specify and however many additional
sequential registers the aggregate requires to assign a register to each of its elements that correspond to the given register
type. Multiple register annotations can be placed on aggregates involving structs where each corresponds to a distinct
register type that will apply to all the registers of that type in the aggregate.

Resource types contained in structs are only allocated registers when they are explicitly used. This includes
elements of arrays of resources since such array elements must be indexed with literals.

// Occupies t0, tl, and t2.

Buffer<float> fbuf[3] : register(t0, space0);
// Occupies registers t3 — tl4.

Buffer<int4> ibuf[4][3] : register(t3, space0);
// Occupies registers t15 and u0.

Working Draft

Resource Binding

struct {RWBuffer<int> rwbuf; Buffer buf;} sbufs : register(tl5) : register(u0);

// Occupies registers tl16 — t21.
struct {Buffer bufs[5]; Buffer buf;} robufs : register(tl6);

// Occupies registers t22—24 and ul—u2
struct {Buffer r; RWBuffer<int> w;} bibufs[2] : register(t22) : register(ul);

If the register binding or register space is not specified, implicit values are used. Whenever not specified, the space
defaults to space0.

Buffer<float2> bufl : register(t0, space0);
Buffer<float2> buf2 : register(tl); // defaults to space0

When the register is not specified, resources will recieve implementation-dependent register assignments.

Working Draft

10 Classes [Classes]

10.1 Static Members [Classes.Static]

10.2 Conversions [Classes.Conversions]

52

11 Templates [Template]

11.1 Template Instantiation [Template.Inst]

11.2 Partial Ordering of Function Templates [Template.Func.Order]

53

12 Intangible Types [Intangible]

54

13 Runtime [Runtime]

55

Acronyms

API Application Programming Interface. 57

C C Programming Language. 4
C++4+ C++ Programming Language. 4

DXC DirectX Shader Compiler. 4, 14
FXC Legacy DirectX Shader Compiler. 4, 14
HLSL High Level Shader Language. 1, 4-9, 21

SIMD Single Instruction Multiple Data. 6
SIMT Single Instruction Multiple Thread. 6
SPMD Single Program Multiple Data. 1, 6, 7, 57

56

Glossary

DirectX DirectX is the multimedia API introduced with Windows 95.. 4, 5, 8

Dispatch A group of one or more Thread Groups which comprise the largest unit of a shader execution. Also called:
grid, compute space or index space.. 7

IEEE Standard 754 IEEE Standard For Floating Point Arithmetic. 19
ISO C standard (2011) ISO/IEC 9899:2011: Standard for Programming Language C.. 4, 9, 13
ISO C standard (2023) ISO/IEC 9899:2023: Standard for Programming Language C.. 19

ISO C++ standard (2011) ISO/IEC 14882:2011: Standard for Programming Language C++.. 4, 9, 15, 16, 19-21,
33, 34

Lane The computation performed on a single element as described in the SPMD program. Also called: thread.. 6-8, 57

Quad A group of four Lanes which form a cluster of adjacent computations in the data topology. Also called: quad-group
or quad-wave. . 6, 7

Shader Model Versioned hardware description included as part of the DirectX specification, which is used for code
generation to a common set of features across a range of vendors.. 5, 8

Thread Group A group of Lanes which may be subdivided into one or more Waves and comprise a larger computation.
Also known as: group, workgroup, block or thread block.. 6-8, 57

Wave A group of Lanes which execute together. The number of Lanes in a Wave varies by hardware implementation.
Also called: warp, SIMD-group, subgroup, or wavefront.. 6, 7, 57

57

	Introduction
	Scope
	Normative References
	Terms and definitions
	Common Definitions
	Correct Data
	Diagnostic Message
	Ill-formed Program
	Implementation-defined Behavior
	Implementation Limits
	Undefined Behavior
	Unspecified Behavior
	Well-formed Program
	Runtime Implementation

	Runtime Targeting
	spmd Programming Model
	spmd Terminology
	spmd Execution Model
	Optimization Restrictions

	hlsl Memory Models
	Memory Spaces
	Memory Spaces

	Lexical Conventions
	Unit of Translation
	Phases of Translation
	Character Sets
	Preprocessing Tokens
	Tokens
	Comments
	Header Names
	Preprocessing numbers
	Literals
	Literal Classifications
	Integer Literals
	Floating-point Literals
	Vector Literals

	Basic Concepts
	Preamble
	Declarations and definitions
	One-Definition Rule
	Scope
	Name Lookup
	Program and linkage
	Program Linkage
	External Linkage
	Internal Linkage
	No Linkage

	Start
	Execution Mode

	Types
	Arithmetic Types
	Scalarized Type Compatability

	Lvalues and rvalues

	Standard Conversions
	Lvalue-to-rvalue conversion
	Array-to-pointer conversion
	Integral promotion
	Floating point promotion
	Integral conversion
	Floating point conversion
	Floating point-integral conversion
	Boolean conversion
	Elementwise conversion
	Vector splat conversion
	Array and Class splat conversion
	Vector and matrix truncation conversion
	Component-wise conversions
	Qualification conversion
	Conversion Rank
	Integer Conversion Rank
	Floating Point Conversion Rank

	Expressions
	Usual Arithmetic Conversions
	Primary Expressions
	Literals
	This
	Parenthesis
	Names

	Postfix Expressions
	Subscript
	Function Calls

	Statements
	Label Statements
	Attributes
	Unroll Attribute
	Loop Attribute

	Declarations
	Preamble
	Specifiers
	General
	Function specifiers

	Declarators
	Initializers
	Aggregate Initialization

	Function Definitions
	Attributes
	Semantic Annotations
	Entry Attributes

	Export Declarations

	Overloading
	Overloadable Declarations
	Overload Resolution
	Candidate Functions and Argument Lists
	Viable Functions
	Best Viable Function
	Implicit Conversion Sequences

	Resource Types
	Typed Buffers
	Constructors
	Dimensions
	Element Access

	Raw Buffers
	Byte Access Buffers
	Constructors
	Dimensions
	Element Access
	Atomic Operations

	Structured Buffers
	Constructors
	Dimensions
	Element Access
	Counter Manipulation
	Append
	Consume

	Constant Buffers
	Constant Buffer Declaration Block
	Constant Buffer Class
	Constant Buffer Layout
	Packoffset annotations
	Default Constant Buffer

	Samplers
	CheckAccessFullyMapped
	Resource Binding

	Classes
	Static Members
	Conversions

	Templates
	Template Instantiation
	Partial Ordering of Function Templates

	Intangible Types
	Runtime
	Acronyms
	Glossary

