import asyncio
import uuid
from abc import ABC, abstractmethod
from typing import Any, AsyncGenerator, Callable, Dict, List, Mapping, Sequence
from autogen_core import (
AgentId,
AgentRuntime,
AgentType,
CancellationToken,
ComponentBase,
SingleThreadedAgentRuntime,
TypeSubscription,
)
from pydantic import BaseModel, ValidationError
from ...base import ChatAgent, TaskResult, Team, TerminationCondition
from ...messages import (
BaseAgentEvent,
BaseChatMessage,
MessageFactory,
ModelClientStreamingChunkEvent,
StopMessage,
StructuredMessage,
TextMessage,
)
from ...state import TeamState
from ._chat_agent_container import ChatAgentContainer
from ._events import (
GroupChatPause,
GroupChatReset,
GroupChatResume,
GroupChatStart,
GroupChatTermination,
SerializableException,
)
from ._sequential_routed_agent import SequentialRoutedAgent
[docs]
class BaseGroupChat(Team, ABC, ComponentBase[BaseModel]):
"""The base class for group chat teams.
To implement a group chat team, first create a subclass of :class:`BaseGroupChatManager` and then
create a subclass of :class:`BaseGroupChat` that uses the group chat manager.
"""
component_type = "team"
def __init__(
self,
participants: List[ChatAgent],
group_chat_manager_name: str,
group_chat_manager_class: type[SequentialRoutedAgent],
termination_condition: TerminationCondition | None = None,
max_turns: int | None = None,
runtime: AgentRuntime | None = None,
custom_message_types: List[type[BaseAgentEvent | BaseChatMessage]] | None = None,
emit_team_events: bool = False,
):
if len(participants) == 0:
raise ValueError("At least one participant is required.")
if len(participants) != len(set(participant.name for participant in participants)):
raise ValueError("The participant names must be unique.")
self._participants = participants
self._base_group_chat_manager_class = group_chat_manager_class
self._termination_condition = termination_condition
self._max_turns = max_turns
self._message_factory = MessageFactory()
if custom_message_types is not None:
for message_type in custom_message_types:
self._message_factory.register(message_type)
for agent in participants:
for message_type in agent.produced_message_types:
try:
is_registered = self._message_factory.is_registered(message_type) # type: ignore[reportUnknownArgumentType]
if issubclass(message_type, StructuredMessage) and not is_registered:
self._message_factory.register(message_type) # type: ignore[reportUnknownArgumentType]
except TypeError:
# Not a class or not a valid subclassable type (skip)
pass
# The team ID is a UUID that is used to identify the team and its participants
# in the agent runtime. It is used to create unique topic types for each participant.
# Currently, team ID is binded to an object instance of the group chat class.
# So if you create two instances of group chat, there will be two teams with different IDs.
self._team_id = str(uuid.uuid4())
# Constants for the group chat team.
# The names are used to identify the agents within the team.
# The names may not be unique across different teams.
self._group_chat_manager_name = group_chat_manager_name
self._participant_names: List[str] = [participant.name for participant in participants]
self._participant_descriptions: List[str] = [participant.description for participant in participants]
# The group chat topic type is used for broadcast communication among all participants and the group chat manager.
self._group_topic_type = f"group_topic_{self._team_id}"
# The group chat manager topic type is used for direct communication with the group chat manager.
self._group_chat_manager_topic_type = f"{self._group_chat_manager_name}_{self._team_id}"
# The participant topic types are used for direct communication with each participant.
self._participant_topic_types: List[str] = [
f"{participant.name}_{self._team_id}" for participant in participants
]
# The output topic type is used for emitting streaming messages from the group chat.
# The group chat manager will relay the messages to the output message queue.
self._output_topic_type = f"output_topic_{self._team_id}"
# The queue for collecting the output messages.
self._output_message_queue: asyncio.Queue[BaseAgentEvent | BaseChatMessage | GroupChatTermination] = (
asyncio.Queue()
)
# Create a runtime for the team.
if runtime is not None:
self._runtime = runtime
self._embedded_runtime = False
else:
# Use a embedded single-threaded runtime for the group chat.
# Background exceptions must not be ignored as it results in non-surfaced exceptions and early team termination.
self._runtime = SingleThreadedAgentRuntime(ignore_unhandled_exceptions=False)
self._embedded_runtime = True
# Flag to track if the group chat has been initialized.
self._initialized = False
# Flag to track if the group chat is running.
self._is_running = False
# Flag to track if the team events should be emitted.
self._emit_team_events = emit_team_events
@abstractmethod
def _create_group_chat_manager_factory(
self,
name: str,
group_topic_type: str,
output_topic_type: str,
participant_topic_types: List[str],
participant_names: List[str],
participant_descriptions: List[str],
output_message_queue: asyncio.Queue[BaseAgentEvent | BaseChatMessage | GroupChatTermination],
termination_condition: TerminationCondition | None,
max_turns: int | None,
message_factory: MessageFactory,
) -> Callable[[], SequentialRoutedAgent]: ...
def _create_participant_factory(
self,
parent_topic_type: str,
output_topic_type: str,
agent: ChatAgent,
message_factory: MessageFactory,
) -> Callable[[], ChatAgentContainer]:
def _factory() -> ChatAgentContainer:
container = ChatAgentContainer(parent_topic_type, output_topic_type, agent, message_factory)
return container
return _factory
async def _init(self, runtime: AgentRuntime) -> None:
# Constants for the group chat manager.
group_chat_manager_agent_type = AgentType(self._group_chat_manager_topic_type)
# Register participants.
# Use the participant topic type as the agent type.
for participant, agent_type in zip(self._participants, self._participant_topic_types, strict=True):
# Register the participant factory.
await ChatAgentContainer.register(
runtime,
type=agent_type,
factory=self._create_participant_factory(
self._group_topic_type, self._output_topic_type, participant, self._message_factory
),
)
# Add subscriptions for the participant.
# The participant should be able to receive messages from its own topic.
await runtime.add_subscription(TypeSubscription(topic_type=agent_type, agent_type=agent_type))
# The participant should be able to receive messages from the group topic.
await runtime.add_subscription(TypeSubscription(topic_type=self._group_topic_type, agent_type=agent_type))
# Register the group chat manager.
await self._base_group_chat_manager_class.register(
runtime,
type=group_chat_manager_agent_type.type,
factory=self._create_group_chat_manager_factory(
name=self._group_chat_manager_name,
group_topic_type=self._group_topic_type,
output_topic_type=self._output_topic_type,
participant_names=self._participant_names,
participant_topic_types=self._participant_topic_types,
participant_descriptions=self._participant_descriptions,
output_message_queue=self._output_message_queue,
termination_condition=self._termination_condition,
max_turns=self._max_turns,
message_factory=self._message_factory,
),
)
# Add subscriptions for the group chat manager.
# The group chat manager should be able to receive messages from the its own topic.
await runtime.add_subscription(
TypeSubscription(
topic_type=self._group_chat_manager_topic_type, agent_type=group_chat_manager_agent_type.type
)
)
# The group chat manager should be able to receive messages from the group topic.
await runtime.add_subscription(
TypeSubscription(topic_type=self._group_topic_type, agent_type=group_chat_manager_agent_type.type)
)
# The group chat manager will relay the messages from output topic to the output message queue.
await runtime.add_subscription(
TypeSubscription(topic_type=self._output_topic_type, agent_type=group_chat_manager_agent_type.type)
)
self._initialized = True
[docs]
async def run(
self,
*,
task: str | BaseChatMessage | Sequence[BaseChatMessage] | None = None,
cancellation_token: CancellationToken | None = None,
) -> TaskResult:
"""Run the team and return the result. The base implementation uses
:meth:`run_stream` to run the team and then returns the final result.
Once the team is stopped, the termination condition is reset.
Args:
task (str | BaseChatMessage | Sequence[BaseChatMessage] | None): The task to run the team with. Can be a string, a single :class:`BaseChatMessage` , or a list of :class:`BaseChatMessage`.
cancellation_token (CancellationToken | None): The cancellation token to kill the task immediately.
Setting the cancellation token potentially put the team in an inconsistent state,
and it may not reset the termination condition.
To gracefully stop the team, use :class:`~autogen_agentchat.conditions.ExternalTermination` instead.
Returns:
result: The result of the task as :class:`~autogen_agentchat.base.TaskResult`. The result contains the messages produced by the team and the stop reason.
Example using the :class:`~autogen_agentchat.teams.RoundRobinGroupChat` team:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
result = await team.run(task="Count from 1 to 10, respond one at a time.")
print(result)
# Run the team again without a task to continue the previous task.
result = await team.run()
print(result)
asyncio.run(main())
Example using the :class:`~autogen_core.CancellationToken` to cancel the task:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_core import CancellationToken
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
cancellation_token = CancellationToken()
# Create a task to run the team in the background.
run_task = asyncio.create_task(
team.run(
task="Count from 1 to 10, respond one at a time.",
cancellation_token=cancellation_token,
)
)
# Wait for 1 second and then cancel the task.
await asyncio.sleep(1)
cancellation_token.cancel()
# This will raise a cancellation error.
await run_task
asyncio.run(main())
"""
result: TaskResult | None = None
async for message in self.run_stream(
task=task,
cancellation_token=cancellation_token,
):
if isinstance(message, TaskResult):
result = message
if result is not None:
return result
raise AssertionError("The stream should have returned the final result.")
[docs]
async def run_stream(
self,
*,
task: str | BaseChatMessage | Sequence[BaseChatMessage] | None = None,
cancellation_token: CancellationToken | None = None,
) -> AsyncGenerator[BaseAgentEvent | BaseChatMessage | TaskResult, None]:
"""Run the team and produces a stream of messages and the final result
of the type :class:`~autogen_agentchat.base.TaskResult` as the last item in the stream. Once the
team is stopped, the termination condition is reset.
.. note::
If an agent produces :class:`~autogen_agentchat.messages.ModelClientStreamingChunkEvent`,
the message will be yielded in the stream but it will not be included in the
:attr:`~autogen_agentchat.base.TaskResult.messages`.
Args:
task (str | BaseChatMessage | Sequence[BaseChatMessage] | None): The task to run the team with. Can be a string, a single :class:`BaseChatMessage` , or a list of :class:`BaseChatMessage`.
cancellation_token (CancellationToken | None): The cancellation token to kill the task immediately.
Setting the cancellation token potentially put the team in an inconsistent state,
and it may not reset the termination condition.
To gracefully stop the team, use :class:`~autogen_agentchat.conditions.ExternalTermination` instead.
Returns:
stream: an :class:`~collections.abc.AsyncGenerator` that yields :class:`~autogen_agentchat.messages.BaseAgentEvent`, :class:`~autogen_agentchat.messages.BaseChatMessage`, and the final result :class:`~autogen_agentchat.base.TaskResult` as the last item in the stream.
Example using the :class:`~autogen_agentchat.teams.RoundRobinGroupChat` team:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
stream = team.run_stream(task="Count from 1 to 10, respond one at a time.")
async for message in stream:
print(message)
# Run the team again without a task to continue the previous task.
stream = team.run_stream()
async for message in stream:
print(message)
asyncio.run(main())
Example using the :class:`~autogen_core.CancellationToken` to cancel the task:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.ui import Console
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_core import CancellationToken
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
cancellation_token = CancellationToken()
# Create a task to run the team in the background.
run_task = asyncio.create_task(
Console(
team.run_stream(
task="Count from 1 to 10, respond one at a time.",
cancellation_token=cancellation_token,
)
)
)
# Wait for 1 second and then cancel the task.
await asyncio.sleep(1)
cancellation_token.cancel()
# This will raise a cancellation error.
await run_task
asyncio.run(main())
"""
# Create the messages list if the task is a string or a chat message.
messages: List[BaseChatMessage] | None = None
if task is None:
pass
elif isinstance(task, str):
messages = [TextMessage(content=task, source="user")]
elif isinstance(task, BaseChatMessage):
messages = [task]
elif isinstance(task, list):
if not task:
raise ValueError("Task list cannot be empty.")
messages = []
for msg in task:
if not isinstance(msg, BaseChatMessage):
raise ValueError("All messages in task list must be valid BaseChatMessage types")
messages.append(msg)
else:
raise ValueError("Task must be a string, a BaseChatMessage, or a list of BaseChatMessage.")
# Check if the messages types are registered with the message factory.
if messages is not None:
for msg in messages:
if not self._message_factory.is_registered(msg.__class__):
raise ValueError(
f"Message type {msg.__class__} is not registered with the message factory. "
"Please register it with the message factory by adding it to the "
"custom_message_types list when creating the team."
)
if self._is_running:
raise ValueError("The team is already running, it cannot run again until it is stopped.")
self._is_running = True
if self._embedded_runtime:
# Start the embedded runtime.
assert isinstance(self._runtime, SingleThreadedAgentRuntime)
self._runtime.start()
if not self._initialized:
await self._init(self._runtime)
shutdown_task: asyncio.Task[None] | None = None
if self._embedded_runtime:
async def stop_runtime() -> None:
assert isinstance(self._runtime, SingleThreadedAgentRuntime)
try:
# This will propagate any exceptions raised.
await self._runtime.stop_when_idle()
# Put a termination message in the queue to indicate that the group chat is stopped for whatever reason
# but not due to an exception.
await self._output_message_queue.put(
GroupChatTermination(
message=StopMessage(
content="The group chat is stopped.", source=self._group_chat_manager_name
)
)
)
except Exception as e:
# Stop the consumption of messages and end the stream.
# NOTE: we also need to put a GroupChatTermination event here because when the runtime
# has an exception, the group chat manager may not be able to put a GroupChatTermination event in the queue.
# This may not be necessary if the group chat manager is able to handle the exception and put the event in the queue.
await self._output_message_queue.put(
GroupChatTermination(
message=StopMessage(
content="An exception occurred in the runtime.", source=self._group_chat_manager_name
),
error=SerializableException.from_exception(e),
)
)
# Create a background task to stop the runtime when the group chat
# is stopped or has an exception.
shutdown_task = asyncio.create_task(stop_runtime())
try:
# Run the team by sending the start message to the group chat manager.
# The group chat manager will start the group chat by relaying the message to the participants
# and the group chat manager.
await self._runtime.send_message(
GroupChatStart(messages=messages),
recipient=AgentId(type=self._group_chat_manager_topic_type, key=self._team_id),
cancellation_token=cancellation_token,
)
# Collect the output messages in order.
output_messages: List[BaseAgentEvent | BaseChatMessage] = []
stop_reason: str | None = None
# Yield the messsages until the queue is empty.
while True:
message_future = asyncio.ensure_future(self._output_message_queue.get())
if cancellation_token is not None:
cancellation_token.link_future(message_future)
# Wait for the next message, this will raise an exception if the task is cancelled.
message = await message_future
if isinstance(message, GroupChatTermination):
# If the message contains an error, we need to raise it here.
# This will stop the team and propagate the error.
if message.error is not None:
raise RuntimeError(str(message.error))
stop_reason = message.message.content
break
yield message
if isinstance(message, ModelClientStreamingChunkEvent):
# Skip the model client streaming chunk events.
continue
output_messages.append(message)
# Yield the final result.
yield TaskResult(messages=output_messages, stop_reason=stop_reason)
finally:
try:
if shutdown_task is not None:
# Wait for the shutdown task to finish.
# This will propagate any exceptions raised.
await shutdown_task
finally:
# Clear the output message queue.
while not self._output_message_queue.empty():
self._output_message_queue.get_nowait()
# Indicate that the team is no longer running.
self._is_running = False
[docs]
async def reset(self) -> None:
"""Reset the team and its participants to their initial state.
The team must be stopped before it can be reset.
Raises:
RuntimeError: If the team has not been initialized or is currently running.
Example using the :class:`~autogen_agentchat.teams.RoundRobinGroupChat` team:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
stream = team.run_stream(task="Count from 1 to 10, respond one at a time.")
async for message in stream:
print(message)
# Reset the team.
await team.reset()
stream = team.run_stream(task="Count from 1 to 10, respond one at a time.")
async for message in stream:
print(message)
asyncio.run(main())
"""
if not self._initialized:
await self._init(self._runtime)
if self._is_running:
raise RuntimeError("The group chat is currently running. It must be stopped before it can be reset.")
self._is_running = True
if self._embedded_runtime:
# Start the runtime.
assert isinstance(self._runtime, SingleThreadedAgentRuntime)
self._runtime.start()
try:
# Send a reset messages to all participants.
for participant_topic_type in self._participant_topic_types:
await self._runtime.send_message(
GroupChatReset(),
recipient=AgentId(type=participant_topic_type, key=self._team_id),
)
# Send a reset message to the group chat manager.
await self._runtime.send_message(
GroupChatReset(),
recipient=AgentId(type=self._group_chat_manager_topic_type, key=self._team_id),
)
finally:
if self._embedded_runtime:
# Stop the runtime.
assert isinstance(self._runtime, SingleThreadedAgentRuntime)
await self._runtime.stop_when_idle()
# Reset the output message queue.
while not self._output_message_queue.empty():
self._output_message_queue.get_nowait()
# Indicate that the team is no longer running.
self._is_running = False
[docs]
async def pause(self) -> None:
"""Pause its participants when the team is running by calling their
:meth:`~autogen_agentchat.base.ChatAgent.on_pause` method via direct RPC calls.
.. attention::
This is an experimental feature introduced in v0.4.9 and may subject
to change or removal in the future.
The team must be initialized before it can be paused.
Different from termination, pausing the team does not cause the
:meth:`run` or :meth:`run_stream` method to return. It calls the
:meth:`~autogen_agentchat.base.ChatAgent.on_pause` method on each
participant, and if the participant does not implement the method, it
will be a no-op.
.. note::
It is the responsibility of the agent class to handle the pause
and ensure that the agent can be resumed later.
Make sure to implement the :meth:`~autogen_agentchat.agents.BaseChatAgent.on_pause`
method in your agent class for custom pause behavior.
By default, the agent will not do anything when called.
Raises:
RuntimeError: If the team has not been initialized. Exceptions from
the participants when calling their implementations of
:class:`~autogen_agentchat.base.ChatAgent.on_pause` are
propagated to this method and raised.
"""
if not self._initialized:
raise RuntimeError("The group chat has not been initialized. It must be run before it can be paused.")
# Send a pause message to all participants.
for participant_topic_type in self._participant_topic_types:
await self._runtime.send_message(
GroupChatPause(),
recipient=AgentId(type=participant_topic_type, key=self._team_id),
)
# Send a pause message to the group chat manager.
await self._runtime.send_message(
GroupChatPause(),
recipient=AgentId(type=self._group_chat_manager_topic_type, key=self._team_id),
)
[docs]
async def resume(self) -> None:
"""Resume its participants when the team is running and paused by calling their
:meth:`~autogen_agentchat.base.ChatAgent.on_resume` method via direct RPC calls.
.. attention::
This is an experimental feature introduced in v0.4.9 and may subject
to change or removal in the future.
The team must be initialized before it can be resumed.
Different from termination and restart with a new task, resuming the team
does not cause the :meth:`run` or :meth:`run_stream` method to return.
It calls the :meth:`~autogen_agentchat.base.ChatAgent.on_resume` method on each
participant, and if the participant does not implement the method, it
will be a no-op.
.. note::
It is the responsibility of the agent class to handle the resume
and ensure that the agent continues from where it was paused.
Make sure to implement the :meth:`~autogen_agentchat.agents.BaseChatAgent.on_resume`
method in your agent class for custom resume behavior.
Raises:
RuntimeError: If the team has not been initialized. Exceptions from
the participants when calling their implementations of :class:`~autogen_agentchat.base.ChatAgent.on_resume`
method are propagated to this method and raised.
"""
if not self._initialized:
raise RuntimeError("The group chat has not been initialized. It must be run before it can be resumed.")
# Send a resume message to all participants.
for participant_topic_type in self._participant_topic_types:
await self._runtime.send_message(
GroupChatResume(),
recipient=AgentId(type=participant_topic_type, key=self._team_id),
)
# Send a resume message to the group chat manager.
await self._runtime.send_message(
GroupChatResume(),
recipient=AgentId(type=self._group_chat_manager_topic_type, key=self._team_id),
)
[docs]
async def save_state(self) -> Mapping[str, Any]:
"""Save the state of the group chat team.
The state is saved by calling the :meth:`~autogen_core.AgentRuntime.agent_save_state` method
on each participant and the group chat manager with their internal agent ID.
The state is returned as a nested dictionary: a dictionary with key `agent_states`,
which is a dictionary the agent names as keys and the state as values.
.. code-block:: text
{
"agent_states": {
"agent1": ...,
"agent2": ...,
"RoundRobinGroupChatManager": ...
}
}
.. note::
Starting v0.4.9, the state is using the agent name as the key instead of the agent ID,
and the `team_id` field is removed from the state. This is to allow the state to be
portable across different teams and runtimes. States saved with the old format
may not be compatible with the new format in the future.
.. caution::
When calling :func:`~autogen_agentchat.teams.BaseGroupChat.save_state` on a team
while it is running, the state may not be consistent and may result in an unexpected state.
It is recommended to call this method when the team is not running or after it is stopped.
"""
if not self._initialized:
await self._init(self._runtime)
# Store state of each agent by their name.
# NOTE: we don't use the agent ID as the key here because we need to be able to decouple
# the state of the agents from their identities in the agent runtime.
agent_states: Dict[str, Mapping[str, Any]] = {}
# Save the state of all participants.
for name, agent_type in zip(self._participant_names, self._participant_topic_types, strict=True):
agent_id = AgentId(type=agent_type, key=self._team_id)
# NOTE: We are using the runtime's save state method rather than the agent instance's
# save_state method because we want to support saving state of remote agents.
agent_states[name] = await self._runtime.agent_save_state(agent_id)
# Save the state of the group chat manager.
agent_id = AgentId(type=self._group_chat_manager_topic_type, key=self._team_id)
agent_states[self._group_chat_manager_name] = await self._runtime.agent_save_state(agent_id)
return TeamState(agent_states=agent_states).model_dump()
[docs]
async def load_state(self, state: Mapping[str, Any]) -> None:
"""Load an external state and overwrite the current state of the group chat team.
The state is loaded by calling the :meth:`~autogen_core.AgentRuntime.agent_load_state` method
on each participant and the group chat manager with their internal agent ID.
See :meth:`~autogen_agentchat.teams.BaseGroupChat.save_state` for the expected format of the state.
"""
if not self._initialized:
await self._init(self._runtime)
if self._is_running:
raise RuntimeError("The team cannot be loaded while it is running.")
self._is_running = True
try:
team_state = TeamState.model_validate(state)
# Load the state of all participants.
for name, agent_type in zip(self._participant_names, self._participant_topic_types, strict=True):
agent_id = AgentId(type=agent_type, key=self._team_id)
if name not in team_state.agent_states:
raise ValueError(f"Agent state for {name} not found in the saved state.")
await self._runtime.agent_load_state(agent_id, team_state.agent_states[name])
# Load the state of the group chat manager.
agent_id = AgentId(type=self._group_chat_manager_topic_type, key=self._team_id)
if self._group_chat_manager_name not in team_state.agent_states:
raise ValueError(f"Agent state for {self._group_chat_manager_name} not found in the saved state.")
await self._runtime.agent_load_state(agent_id, team_state.agent_states[self._group_chat_manager_name])
except ValidationError as e:
raise ValueError(
"Invalid state format. The expected state format has changed since v0.4.9. "
"Please read the release note on GitHub."
) from e
finally:
# Indicate that the team is no longer running.
self._is_running = False